معادلة يونغ لابلاس (Arabic Wikipedia)

Analysis of information sources in references of the Wikipedia article "معادلة يونغ لابلاس" in Arabic language version.

refsWebsite
Global rank Arabic rank
1st place
1st place
2nd place
5th place
4th place
6th place
3rd place
8th place
1,580th place
1,267th place
11th place
86th place
441st place
1,334th place
415th place
424th place
451st place
1,108th place
6th place
3rd place
27th place
50th place
2,594th place
9,256th place
5,099th place
4,814th place

ams.org

  • Robert Finn (1999). "Capillary Surface Interfaces" (PDF). AMS. مؤرشف من الأصل (PDF) في 2022-10-07.

answers.com

  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. مؤرشف من الأصل في 2020-08-08. اطلع عليه بتاريخ 2007-09-05.
  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. مؤرشف من الأصل في 2020-08-08. اطلع عليه بتاريخ 2007-09-05.

archive.org

books.google.com

doi.org

hathitrust.org

babel.hathitrust.org

mit.edu

web.mit.edu

nih.gov

pubmed.ncbi.nlm.nih.gov

semanticscholar.org

api.semanticscholar.org

tcd.ie

maths.tcd.ie

uni-goettingen.de

gdz.sub.uni-goettingen.de

  • In 1751, Johann Andreas Segner came to the same conclusion that Hauksbee had reached in 1709: J. A. von Segner (1751) "De figuris superficierum fluidarum" (On the shapes of liquid surfaces), Commentarii Societatis Regiae Scientiarum Gottingensis (Memoirs of the Royal Scientific Society at Göttingen), 1 : 301–372. On page 303, Segner proposes that liquids are held together by an attractive force (vim attractricem) that acts over such short distances "that no one could yet have perceived it with their senses" (… ut nullo adhuc sensu percipi poterit.). نسخة محفوظة 2018-11-29 على موقع واي باك مشين.

web.archive.org

  • Surface Tension Module نسخة محفوظة 2007-10-27 على موقع واي باك مشين., by John W. M. Bush, at المناهج التعليمية المفتوحة لمعهد ماساتشوستس للتكنولوجيا.
  • Robert Finn (1999). "Capillary Surface Interfaces" (PDF). AMS. مؤرشف من الأصل (PDF) في 2022-10-07.
  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. مؤرشف من الأصل في 2020-08-08. اطلع عليه بتاريخ 2007-09-05.
  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. مؤرشف من الأصل في 2020-08-08. اطلع عليه بتاريخ 2007-09-05.
  • Thomas Young (1805) "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, 95 : 65–87. نسخة محفوظة 2021-04-27 على موقع واي باك مشين.
  • Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste, pages 1–79. نسخة محفوظة 2021-04-26 على موقع واي باك مشين.
  • Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste. On page 2 of the Supplément, Laplace states that capillary action is due to "… les lois dans lesquelles l'attraction n'est sensible qu'à des distances insensibles; …" (… the laws in which attraction is sensible [significant] only at insensible [infinitesimal] distances …). نسخة محفوظة 2022-06-16 على موقع واي باك مشين.
  • In 1751, Johann Andreas Segner came to the same conclusion that Hauksbee had reached in 1709: J. A. von Segner (1751) "De figuris superficierum fluidarum" (On the shapes of liquid surfaces), Commentarii Societatis Regiae Scientiarum Gottingensis (Memoirs of the Royal Scientific Society at Göttingen), 1 : 301–372. On page 303, Segner proposes that liquids are held together by an attractive force (vim attractricem) that acts over such short distances "that no one could yet have perceived it with their senses" (… ut nullo adhuc sensu percipi poterit.). نسخة محفوظة 2018-11-29 على موقع واي باك مشين.
  • Carl Friedrich Gauss, Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii [General principles of the theory of fluid shapes in a state of equilibrium] (Göttingen, (Germany): Dieterichs, 1830). Available on-line at: Hathi Trust. نسخة محفوظة 2021-04-27 على موقع واي باك مشين.
  • Franz Neumann with A. Wangerin, ed., Vorlesungen über die Theorie der Capillarität [Lectures on the theory of capillarity] (Leipzig, Germany: B. G. Teubner, 1894). نسخة محفوظة 2021-04-27 على موقع واي باك مشين.
  • Rouse Ball, W. W. [1908] (2003) "Pierre Simon Laplace (1749–1827)", in A Short Account of the History of Mathematics, 4th ed., Dover, (ردمك 0-486-20630-0) نسخة محفوظة 2023-02-20 على موقع واي باك مشين.

wikisource.org

ar.wikisource.org