M. J. Sillen, F. M. Franssen, H. R. Gosker, E. F. Wouters, M. A. Spruit: Metabolic and structural changes in lower-limb skeletal muscle following neuromuscular electrical stimulation: a systematic review. In: PLoS One, 2013, 8(9), S. e69391. doi:10.1371/journal.pone.0069391
J. Gondin, L. Brocca, E. Bellinzona u. a.: Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. In: J Appl Physiol., 1985, Band 110. Nr. 2, S. 433–450. doi:10.1152/japplphysiol.00914.2010
N. A. Maffiuletti, M. Pensini, A. Martin: Activation of human plantar flexor muscles increases after electromyostimulation training. In: J Appl Physiol., 1985, Band 92, Nr. 4, 2002, S. 1383–1392. doi:10.1152/japplphysiol.00884.2001
A. Filipovic, H. Kleinoder, U. Dormann, J. Mester: Electromyostimulation – a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. In: J Strength Cond Res., 2012, 26(9), S. 2600–2614. doi:10.1519/JSC.0b013e31823f2cd1
S. Colson, A. Martin, J. Van Hoecke: Re-examination of training effects by electrostimulation in the human elbow musculoskeletal system. In: Int J Sports Med., 2000, 21(4), S. 281–288. doi:10.1055/s-2000-8882
A. Filipovic, H. Kleinoder, U. Dormann, J. Mester: Electromyostimulation – a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. In: J Strength Cond Res., 2011, 25(11), S. 3218–3238. doi:10.1519/JSC.0b013e318212e3ce
N. R. Glaviano, S. Saliba: Can the Use of Neuromuscular Electrical Stimulation Be Improved to Optimize Quadriceps Strengthening? In: Sports Health, 2016, 8(1), S. 79–85. doi:10.1177/1941738115618174
V. Z. da Silva, J. L. Durigan, R. Arena, M. de Noronha, B. Gurney, G. Cipriano, Jr.: Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis. In: Physiother Theory Pract., 2015, 31(8), S. 533–539. doi:10.3109/09593985.2015.1064191
K. Nosaka, A. Aldayel, M. Jubeau, T. C. Chen: Muscle damage induced by electrical stimulation. In: Eur J Appl Physiol., 2011, 111(10), S. 2427–2437. doi:10.1007/s00421-011-2086-x
L. O. Dantas, A. Vieira, A. L. Siqueira, Jr., T. F. Salvini, J. L. Durigan: Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. In: Muscle Nerve., 2015, 51(1), S. 76–82. doi:10.1002/mus.24280
M. A. Vaz, F. A. Aragao, E. S. Boschi, R. Fortuna, O. Melo Mde: Effects of Russian current and low-frequency pulsed current on discomfort level and current amplitude at 10 % maximal knee extensor torque. In: Physiother Theory Pract., 2012, 28(8), S. 617–623. doi:10.3109/09593985.2012.665984
A. R. Ward: Electrical stimulation using kilohertz-frequency alternating current. In: Phys Ther., 2009,89(2), S. 181–190. doi:10.2522/ptj.20080060
A. R. Ward, W. G. Oliver, D. Buccella: Wrist extensor torque production and discomfort associated with low-frequency and burst-modulated kilohertz-frequency currents. In: Phys Ther., 2006, 86(10), S. 1360–1367. doi:10.2522/ptj.20050300
R. M. Crameri, P. Aagaard, K. Qvortrup, H. Langberg, J. Olesen, M. Kjaer: Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. In: J Physiol. 583(Pt 1), 2007, S. 365–380. doi:10.1113/jphysiol.2007.128827
J. Gondin, L. Brocca, E. Bellinzona, G. D’Antona, N. A. Maffiuletti u. a.: Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. In: J Appl Physiol., 1985, 110(2), 2011, S. 433–450. doi:10.1152/japplphysiol.00914.2010
G. V. Smith, G. Alon, S. R. Roys, R. P. Gullapalli: Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. In: Exp Brain Res., 2003, 150(1), S. 33–39. doi:10.1007/s00221-003-1405-9
S. Jones, W. D. Man, W. Gao, I. J. Higginson, A. Wilcock, M. Maddocks: Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. In: Cochrane Database Syst Rev., 2016, 10, CD009419. doi:10.1002/14651858.CD009419.pub3
D. Durmus, Y. Akyol, G. Alayli, B. Tander, Y. Zahiroglu, F. Canturk: Effects of electrical stimulation program on trunk muscle strength, functional capacity, quality of life, and depression in the patients with low back pain: a randomized controlled trial. In: Rheumatol Int., 2009, 29(8), S. 947–954. doi:10.1007/s00296-008-0819-x
D. Durmus, Y. Durmaz, F. Canturk: Effects of therapeutic ultrasound and electrical stimulation program on pain, trunk muscle strength, disability, walking performance, quality of life, and depression in patients with low back pain: a randomized-controlled trial. In: Rheumatol Int., 2010, 30(7), S. 901–910. doi:10.1007/s00296-009-1072-7
E. A. Keskin, O. Onur, H. L. Keskin, I. I. Gumus, H. Kafali, N. Turhan: Transcutaneous electrical nerve stimulation improves low back pain during pregnancy. In: Gynecol Obstet Invest., 2012, 74(1), S. 76–83. doi:10.1159/000337720
L. X. Chen, Z. R. Zhou, Y. L. Li, G. Z. Ning, Y. Li, X. B. Wang, S. Q. Feng: Transcutaneous Electrical Nerve Stimulation in Patients With Knee Osteoarthritis: Evidence From Randomized-controlled Trials. In: Clin J Pain., 2016, 32(2), S. 146–154. doi:10.1097/AJP.0000000000000233
K. Elzinga, N. Tyreman, A. Ladak, B. Savaryn, J. Olson, T. Gordon: Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. In: Exp Neurol., 2015, 269, S. 142–153. doi:10.1016/j.expneurol.2015.03.022
M. P. Willand: Electrical Stimulation Enhances Reinnervation After Nerve Injury. In: Eur J Transl Myol. 25(4), 2015, S. 243–248. doi:10.4081/ejtm.2015.5243
M. P. Willand, C. D. Chiang, J. J. Zhang, S. W. Kemp, G. H. Borschel, T. Gordon: Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats. In: Neurorehabil Neural Repair., 2015, 29(7), S. 690–700. doi:10.1177/1545968314562117
J. S. Knutson, M. J. Fu, L. R. Sheffler, J. Chae: Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. In: Phys Med Rehabil Clin N Am. 26(4), 2015, S. 729–745. doi:10.1016/j.pmr.2015.06.002
L. Mayer, T. Warring, S. Agrella, H. L. Rogers, E. J. Fox: Effects of functional electrical stimulation on gait function and quality of life for people with multiple sclerosis taking dalfampridine. In: Int J MS Care., 2015, 17(1), S. 35–41. doi:10.7224/1537-2073.2013-033
C. L. Sadowsky, E. R. Hammond, A. B. Strohl, P. K. Commean, S. A. Eby, D. L. Damiano u. a.: Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. In: J Spinal Cord Med., 2013, 36(6), S. 623–631. doi:10.1179/2045772313Y.0000000101
A. R. Ward, S. Lucas-Toumbourou, B McCarthy: A comparison of the analgesic efficacy of medium-frequency alternating current and TENS. In: Physiotherapy. 95(4), 2009, S. 280–288. doi:10.1016/j.physio.2009.06.005
A. R. Ward, W. G. Oliver: Comparison of the hypoalgesic efficacy of low-frequency and burst-modulated kilohertz frequency currents. In: Phys Ther., 2007, 87(8), S. 1056–1063. doi:10.2522/ptj.20060203
G. Schnabel u. a.: Trainingslehre – Trainingswissenschaft: Leistung-Training-Wettkampf. Meyer & Meyer Verlag, 2009, ISBN 978-3-89899-332-6, S. 328. (online)
V. M. Zatsiorsky u. a.: Krafttraining. Praxis und Wissenschaft. Meyer & Meyer Verlag, 2008, ISBN 978-3-89899-358-6, S. 90 und 178 ff. (online)