Künstliche Intelligenz in der Medizin (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Künstliche Intelligenz in der Medizin" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
4th place
7th place
123rd place
6th place
low place
low place
low place
low place
low place
1,628th place
low place
low place
low place
low place
1,023rd place
64th place
3,043rd place
200th place
low place
5,307th place
9,820th place
9,668th place
1,260th place
73rd place
766th place
46th place
179th place
460th place
7,917th place
477th place
low place
low place
175th place
256th place
low place
1,059th place
1st place
1st place
33rd place
2nd place
low place
low place
low place
6,605th place
1,283rd place
1,723rd place
36th place
102nd place
226th place
12th place
743rd place
45th place
8,771st place
low place

aerzteblatt.de

amegroups.com

tcr.amegroups.com

  • Alanna Vial, David Stirling, Matthew Field, Montserrat Ros, Christian Ritz: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. In: Translational Cancer Research. Band 7, Nr. 3, 6. Juli 2018, ISSN 2219-6803, S. 803–816, doi:10.21037/21823 (amegroups.com [abgerufen am 9. Dezember 2018]).

br.de

  • Künstliche Intelligenz erkennt Alzheimer früher als Ärzte. In: BR24. (br.de [abgerufen am 1. Dezember 2018]).

dermengine.com

derstandard.at

doi.org

  • Jeffrey David Iqbal, Rasita Vinay: Are we ready for Artificial Intelligence in Medicine? In: Swiss Medical Weekly. Nr. 19, 19. Mai 2022, doi:10.4414/smw.2022.w30179 (smw.ch [abgerufen am 26. August 2022]).
  • Alanna Vial, David Stirling, Matthew Field, Montserrat Ros, Christian Ritz: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. In: Translational Cancer Research. Band 7, Nr. 3, 6. Juli 2018, ISSN 2219-6803, S. 803–816, doi:10.21037/21823 (amegroups.com [abgerufen am 9. Dezember 2018]).
  • P Tschandl, N Codella, BN Akay, G Argenziano, RP Braun, H Cabo, D Gutman, A Halpern, B Helba, R Hofmann-Wellenhof, A Lallas, J Lapins, C Longo, J Malvehy, MA Marchetti, A Marghoob, S Menzies, A Oakley, J Paoli, S Puig, C Rinner, C Rosendahl, A Scope, C Sinz, HP Soyer, L Thomas, I Zalaudek, H Kittler: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. In: The Lancet. Oncology. 20. Jahrgang, Nr. 7, Juli 2019, S. 938–947, doi:10.1016/S1470-2045(19)30333-X, PMID 31201137.
  • P Tschandl, C Rosendahl, H Kittler: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. In: Scientific data. 5. Jahrgang, 14. August 2018, S. 180161, doi:10.1038/sdata.2018.161, PMID 30106392.
  • HA Haenssle, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A Kalloo, ABH Hassen, L Thomas, A Enk, L Uhlmann, Groups. Reader study level-I and level-II: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. In: Annals of oncology: official journal of the European Society for Medical Oncology. 29. Jahrgang, Nr. 8, 1. August 2018, S. 1836–1842, doi:10.1093/annonc/mdy166, PMID 29846502.
  • P Tschandl, C Rosendahl, BN Akay, G Argenziano, A Blum, RP Braun, H Cabo, JY Gourhant, J Kreusch, A Lallas, J Lapins, A Marghoob, S Menzies, NM Neuber, J Paoli, HS Rabinovitz, C Rinner, A Scope, HP Soyer, C Sinz, L Thomas, I Zalaudek, H Kittler: Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. In: JAMA dermatology. 155. Jahrgang, Nr. 1, 1. Januar 2019, S. 58–65, doi:10.1001/jamadermatol.2018.4378, PMID 30484822.
  • MA Marchetti, NCF Codella, SW Dusza, DA Gutman, B Helba, A Kalloo, N Mishra, C Carrera, ME Celebi, JL DeFazio, N Jaimes, AA Marghoob, E Quigley, A Scope, O Yélamos, AC Halpern, Collaboration. International Skin Imaging: Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. In: Journal of the American Academy of Dermatology. 78. Jahrgang, Nr. 2, Februar 2018, S. 270–277.e1, doi:10.1016/j.jaad.2017.08.016, PMID 28969863.
  • HA Haenssle, C Fink, F Toberer, J Winkler, W Stolz, T Deinlein, R Hofmann-Wellenhof, A Lallas, S Emmert, T Buhl, M Zutt, A Blum, MS Abassi, L Thomas, I Tromme, P Tschandl, A Enk, A Rosenberger, Groups. Reader Study Level I and Level II: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. In: Annals of oncology: official journal of the European Society for Medical Oncology. 31. Jahrgang, Nr. 1, Januar 2020, S. 137–143, doi:10.1016/j.annonc.2019.10.013, PMID 31912788.
  • P Tschandl, H Kittler, G Argenziano: A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. In: The British journal of dermatology. 177. Jahrgang, Nr. 3, September 2017, S. 867–869, doi:10.1111/bjd.15695, PMID 28569993.
  • SS Han, MS Kim, W Lim, GH Park, I Park, SE Chang: Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. In: The Journal of investigative dermatology. 138. Jahrgang, Nr. 7, Juli 2018, S. 1529–1538, doi:10.1016/j.jid.2018.01.028, PMID 29428356.
  • C Yu, S Yang, W Kim, J Jung, KY Chung, SW Lee, B Oh: Acral melanoma detection using a convolutional neural network for dermoscopy images. In: PloS one. 13. Jahrgang, Nr. 3, 2018, S. e0193321, doi:10.1371/journal.pone.0193321, PMID 29513718.
  • A Esteva, B Kuprel, RA Novoa, J Ko, SM Swetter, HM Blau, S Thrun: Dermatologist-level classification of skin cancer with deep neural networks. In: Nature. 542. Jahrgang, Nr. 7639, 2. Februar 2017, S. 115–118, doi:10.1038/nature21056, PMID 28117445.
  • S Polesie, M Gillstedt, H Kittler, A Lallas, P Tschandl, I Zalaudek, J Paoli: Attitudes towards artificial intelligence within dermatology: an international online survey. In: The British journal of dermatology. 17. Januar 2020, doi:10.1111/bjd.18875, PMID 31953854.
  • SS Han, I Park, W Lim, MS Kim, GH Park, JB Chae, CH Huh, SE Chang, JI Na: Augment Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. In: The Journal of investigative dermatology. 5. Februar 2020, doi:10.1016/j.jid.2020.01.019, PMID 32243882.
  • A Lallas, G Argenziano: Artificial intelligence and melanoma diagnosis: ignoring human nature may lead to false predictions. In: Dermatology practical & conceptual. 8. Jahrgang, Nr. 4, Oktober 2018, S. 249–251, doi:10.5826/dpc.0804a01, PMID 30479851.
  • C Navarrete-Dechent, SW Dusza, K Liopyris, AA Marghoob, AC Halpern, MA Marchetti: Automated Dermatological Diagnosis: Hype or Reality? In: The Journal of investigative dermatology. 138. Jahrgang, Nr. 10, Oktober 2018, S. 2277–2279, doi:10.1016/j.jid.2018.04.040, PMID 29864435.
  • A Ngoo, A Finnane, E McMeniman, JM Tan, M Janda, HP Soyer: Efficacy of smartphone applications in high-risk pigmented lesions. In: The Australasian journal of dermatology. 59. Jahrgang, Nr. 3, August 2018, S. e175-e182, doi:10.1111/ajd.12599, PMID 28240347.
  • Yiming Ding, Jae Ho Sohn, Michael G. Kawczynski, Hari Trivedi, Roy Harnish: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. In: Radiology. 6. November 2018, ISSN 0033-8419, S. 180958, doi:10.1148/radiol.2018180958 (rsna.org [abgerufen am 1. Dezember 2018]).
  • Pfau M, Walther G, von der Emde L, Berens P, Faes L, Fleckenstein M, Heeren TFC, Kortüm K, Künzel SH, Müller PL, Maloca PM, Waldstein SM, Wintergerst MWM, Schmitz-Valckenberg S, Finger RP, Holz FG: Artificial intelligence in ophthalmology: Guidelines for physicians for the critical evaluation of studies. In: Ophthalmologe. 117. Jahrgang, Nr. 10, Oktober 2020, S. 973–988, doi:10.1007/s00347-020-01209-z, PMID 32857270.
  • Ruamviboonsuk, P., Krause, J., Chotcomwongse, P. et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. npj Digit. Med. 2, 25 (2019). doi:10.1038/s41746-019-0099-8
  • A. Y. Lee et al.: Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. In: Diabetes Care 2021; 44: S. 1168–1175, doi:10.2337/dc20-1877
  • Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. In: Nat Biomed Eng. 2. Jahrgang, Nr. 3, März 2018, S. 158–164, doi:10.1038/s41551-018-0195-0, PMID 31015713.
  • Dieck S, Ibarra M, Moghul I, Yeung MW, Pantel JT, Thiele S, Pfau M, Fleckenstein M, Pontikos N, Krawitz PM: Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals. In: Transl Vis Sci Technol. 9. Jahrgang, Nr. 7, Juni 2020, S. 8, doi:10.1167/tvst.9.7.8, PMID 32832215, PMC 7414790 (freier Volltext).
  • Batchu et al. Review of Applications of Machine Learning in Mammography and Future Challenges; Oncology 2021 doi:10.1159/000515698
  • Arash Azhand, Sophie Rabe, Swantje Müller, Igor Sattler, Anika Heimann-Steinert: Algorithm based on one monocular video delivers highly valid and reliable gait parameters. In: Scientific Reports. 11, 2021, doi:10.1038/s41598-021-93530-z.
  • Avishek Choudhury, Emily Renjilian, Onur Asan: Use of machine learning in geriatric clinical care for chronic diseases: a systematic literature review JAMIA Open, 3, 2020, 459–471 doi:10.1093/jamiaopen/ooaa034
  • Stellungnahme Vorstand Bundesärztekammer: Präzisionsmedizin: Bewertung unter medizinisch-wissenschaftlichen und ökonomischen Aspekten; Deutsches Ärzteblatt (2020) doi:10.3238/baek sn praezision 2020;
  • Jack Wilkinson et al.: Time to reality check the promises of machine learning-powered precision medicine. Lancet Digital Health 2020; doi:10.1016/S2589-7500(20)30200-4
  • Adam R. Schertz et al.: Sepsis Prediction Model for Determining Sepsis vs SIRS, qSOFA, and SOFA. In: JAMA Netw Open. Band 6, Nr. 8, 2023, doi:10.1001/jamanetworkopen.2023.29729.
  • Andrew Wong et al.: External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. In: JAMA Intern Med. Band 181, Nr. 8, 2021, S. 1065–1070, doi:10.1001/jamainternmed.2021.2626.
  • Cheryl M. Corcoran, Facundo Carrillo, Diego Fernández-Slezak, Gillinder Bedi, Casimir Klim: Prediction of psychosis across protocols and risk cohorts using automated language analysis. In: World Psychiatry. Band 17, Nr. 1, 19. Januar 2018, ISSN 1723-8617, S. 67–75, doi:10.1002/wps.20491, PMID 29352548.
  • C. J. Haug, J. M. Drazen, Artificial Intelligence and Machine Learning in Clinical Medicine, 2023 N Engl J Med 2023;388:1201-8. DOI:10.1056/NEJMra2302038
  • Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med 2023; 388: 1233-9. DOI:10.1056/NEJMsr2214184 (Appendix)
  • Habicht J et al. : Closing the accessibility gap to mental health treatment with a personalized self-referral chatbot. Nature Medicine. (2024) DOI:10.1038/s41591-023-02766-x.
  • Ryan Han, Ioannidis J, Topol EJ. et al.: Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. In: Lancet Dig Health. Band 6, Nr. 5, Mai 2024, S. e367–e373, doi:10.1016/S2589-7500(24)00047-5.
  • Jesus Gomez Rossi et al.: Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and DiabeticRetinopathy In: JAMA Network Open. 2022;5(3) doi:10.1001/jamanetworkopen.2022.0269
  • UJ Muehlematter, P Daniore, KN Vokinger Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis Lancet Digital Health (2021) doi:10.1016/S2589-7500(20)30292-2, PMID 33478929
  • Jeffrey David Iqbal, Nikola Biller-Andorno: The regulatory gap in digital health and alternative pathways to bridge it. In: Health Policy and Technology. Band 11, Nr. 3, 1. September 2022, ISSN 2211-8837, S. 100663, doi:10.1016/j.hlpt.2022.100663.
  • Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young: Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. In: Journal of The Royal Society Interface. Band 12, Nr. 104, 6. März 2015, ISSN 1742-5689, S. 20141289, doi:10.1098/rsif.2014.1289, PMID 25652463.
  • Schultze J et al. (2021): Swarm Learning for decentralized and confidential clinical machine learning. Nature. doi:10.1038/s41586-021-03583-3
  • Kaissis G, Ziller A et al. (2021): End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence. doi:10.1038/s42256-021-00337-8
  • Pantelis Linardatos, Vasilis Papastefanopoulos, Sotiris Kotsiantis: Explainable AI: A Review of Machine Learning Interpretability Methods. In: Entropy. Band 23, Nr. 1, 25. Dezember 2020, ISSN 1099-4300, S. 18, doi:10.3390/e23010018, PMID 33375658, PMC 7824368 (freier Volltext).
  • Aniek F. Markus, Jan A. Kors, Peter R. Rijnbeek: The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. In: Journal of Biomedical Informatics. Band 113, Januar 2021, S. 103655, doi:10.1016/j.jbi.2020.103655.
  • Boris Babic, Sara Gerke, Theodoros Evgeniou, I. Glenn Cohen: Beware explanations from AI in health care. In: Science. Band 373, Nr. 6552, 16. Juli 2021, ISSN 0036-8075, S. 284–286, doi:10.1126/science.abg1834.

fotofinder.de

futurezone.de

geo.de

gruenderszene.de

heise.de

independent.co.uk

  • AI robot finds ingredient in toothpaste may help fight malaria. In: The Independent. (independent.co.uk [abgerufen am 1. Dezember 2018]).

internisten-im-netz.de

ki-at-home.de

mixed.de

ndr.de

  • NDR: Wie nützlich sind „Hautkrebs-Apps“? (ndr.de [abgerufen am 1. Dezember 2018]).

nih.gov

ncbi.nlm.nih.gov

  • P Tschandl, N Codella, BN Akay, G Argenziano, RP Braun, H Cabo, D Gutman, A Halpern, B Helba, R Hofmann-Wellenhof, A Lallas, J Lapins, C Longo, J Malvehy, MA Marchetti, A Marghoob, S Menzies, A Oakley, J Paoli, S Puig, C Rinner, C Rosendahl, A Scope, C Sinz, HP Soyer, L Thomas, I Zalaudek, H Kittler: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. In: The Lancet. Oncology. 20. Jahrgang, Nr. 7, Juli 2019, S. 938–947, doi:10.1016/S1470-2045(19)30333-X, PMID 31201137.
  • P Tschandl, C Rosendahl, H Kittler: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. In: Scientific data. 5. Jahrgang, 14. August 2018, S. 180161, doi:10.1038/sdata.2018.161, PMID 30106392.
  • HA Haenssle, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A Kalloo, ABH Hassen, L Thomas, A Enk, L Uhlmann, Groups. Reader study level-I and level-II: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. In: Annals of oncology: official journal of the European Society for Medical Oncology. 29. Jahrgang, Nr. 8, 1. August 2018, S. 1836–1842, doi:10.1093/annonc/mdy166, PMID 29846502.
  • P Tschandl, C Rosendahl, BN Akay, G Argenziano, A Blum, RP Braun, H Cabo, JY Gourhant, J Kreusch, A Lallas, J Lapins, A Marghoob, S Menzies, NM Neuber, J Paoli, HS Rabinovitz, C Rinner, A Scope, HP Soyer, C Sinz, L Thomas, I Zalaudek, H Kittler: Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. In: JAMA dermatology. 155. Jahrgang, Nr. 1, 1. Januar 2019, S. 58–65, doi:10.1001/jamadermatol.2018.4378, PMID 30484822.
  • MA Marchetti, NCF Codella, SW Dusza, DA Gutman, B Helba, A Kalloo, N Mishra, C Carrera, ME Celebi, JL DeFazio, N Jaimes, AA Marghoob, E Quigley, A Scope, O Yélamos, AC Halpern, Collaboration. International Skin Imaging: Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. In: Journal of the American Academy of Dermatology. 78. Jahrgang, Nr. 2, Februar 2018, S. 270–277.e1, doi:10.1016/j.jaad.2017.08.016, PMID 28969863.
  • HA Haenssle, C Fink, F Toberer, J Winkler, W Stolz, T Deinlein, R Hofmann-Wellenhof, A Lallas, S Emmert, T Buhl, M Zutt, A Blum, MS Abassi, L Thomas, I Tromme, P Tschandl, A Enk, A Rosenberger, Groups. Reader Study Level I and Level II: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. In: Annals of oncology: official journal of the European Society for Medical Oncology. 31. Jahrgang, Nr. 1, Januar 2020, S. 137–143, doi:10.1016/j.annonc.2019.10.013, PMID 31912788.
  • P Tschandl, H Kittler, G Argenziano: A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. In: The British journal of dermatology. 177. Jahrgang, Nr. 3, September 2017, S. 867–869, doi:10.1111/bjd.15695, PMID 28569993.
  • SS Han, MS Kim, W Lim, GH Park, I Park, SE Chang: Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. In: The Journal of investigative dermatology. 138. Jahrgang, Nr. 7, Juli 2018, S. 1529–1538, doi:10.1016/j.jid.2018.01.028, PMID 29428356.
  • C Yu, S Yang, W Kim, J Jung, KY Chung, SW Lee, B Oh: Acral melanoma detection using a convolutional neural network for dermoscopy images. In: PloS one. 13. Jahrgang, Nr. 3, 2018, S. e0193321, doi:10.1371/journal.pone.0193321, PMID 29513718.
  • A Esteva, B Kuprel, RA Novoa, J Ko, SM Swetter, HM Blau, S Thrun: Dermatologist-level classification of skin cancer with deep neural networks. In: Nature. 542. Jahrgang, Nr. 7639, 2. Februar 2017, S. 115–118, doi:10.1038/nature21056, PMID 28117445.
  • S Polesie, M Gillstedt, H Kittler, A Lallas, P Tschandl, I Zalaudek, J Paoli: Attitudes towards artificial intelligence within dermatology: an international online survey. In: The British journal of dermatology. 17. Januar 2020, doi:10.1111/bjd.18875, PMID 31953854.
  • SS Han, I Park, W Lim, MS Kim, GH Park, JB Chae, CH Huh, SE Chang, JI Na: Augment Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. In: The Journal of investigative dermatology. 5. Februar 2020, doi:10.1016/j.jid.2020.01.019, PMID 32243882.
  • A Lallas, G Argenziano: Artificial intelligence and melanoma diagnosis: ignoring human nature may lead to false predictions. In: Dermatology practical & conceptual. 8. Jahrgang, Nr. 4, Oktober 2018, S. 249–251, doi:10.5826/dpc.0804a01, PMID 30479851.
  • C Navarrete-Dechent, SW Dusza, K Liopyris, AA Marghoob, AC Halpern, MA Marchetti: Automated Dermatological Diagnosis: Hype or Reality? In: The Journal of investigative dermatology. 138. Jahrgang, Nr. 10, Oktober 2018, S. 2277–2279, doi:10.1016/j.jid.2018.04.040, PMID 29864435.
  • A Ngoo, A Finnane, E McMeniman, JM Tan, M Janda, HP Soyer: Efficacy of smartphone applications in high-risk pigmented lesions. In: The Australasian journal of dermatology. 59. Jahrgang, Nr. 3, August 2018, S. e175-e182, doi:10.1111/ajd.12599, PMID 28240347.
  • Pfau M, Walther G, von der Emde L, Berens P, Faes L, Fleckenstein M, Heeren TFC, Kortüm K, Künzel SH, Müller PL, Maloca PM, Waldstein SM, Wintergerst MWM, Schmitz-Valckenberg S, Finger RP, Holz FG: Artificial intelligence in ophthalmology: Guidelines for physicians for the critical evaluation of studies. In: Ophthalmologe. 117. Jahrgang, Nr. 10, Oktober 2020, S. 973–988, doi:10.1007/s00347-020-01209-z, PMID 32857270.
  • Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. In: Nat Biomed Eng. 2. Jahrgang, Nr. 3, März 2018, S. 158–164, doi:10.1038/s41551-018-0195-0, PMID 31015713.
  • Dieck S, Ibarra M, Moghul I, Yeung MW, Pantel JT, Thiele S, Pfau M, Fleckenstein M, Pontikos N, Krawitz PM: Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals. In: Transl Vis Sci Technol. 9. Jahrgang, Nr. 7, Juni 2020, S. 8, doi:10.1167/tvst.9.7.8, PMID 32832215, PMC 7414790 (freier Volltext).
  • Cheryl M. Corcoran, Facundo Carrillo, Diego Fernández-Slezak, Gillinder Bedi, Casimir Klim: Prediction of psychosis across protocols and risk cohorts using automated language analysis. In: World Psychiatry. Band 17, Nr. 1, 19. Januar 2018, ISSN 1723-8617, S. 67–75, doi:10.1002/wps.20491, PMID 29352548.
  • UJ Muehlematter, P Daniore, KN Vokinger Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis Lancet Digital Health (2021) doi:10.1016/S2589-7500(20)30292-2, PMID 33478929
  • Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young: Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. In: Journal of The Royal Society Interface. Band 12, Nr. 104, 6. März 2015, ISSN 1742-5689, S. 20141289, doi:10.1098/rsif.2014.1289, PMID 25652463.
  • Pantelis Linardatos, Vasilis Papastefanopoulos, Sotiris Kotsiantis: Explainable AI: A Review of Machine Learning Interpretability Methods. In: Entropy. Band 23, Nr. 1, 25. Dezember 2020, ISSN 1099-4300, S. 18, doi:10.3390/e23010018, PMID 33375658, PMC 7824368 (freier Volltext).

phys.org

  • Artificially intelligent robot scientist 'Eve' could boost search for new drugs. (phys.org [abgerufen am 1. Dezember 2018]).

redirecter.toolforge.org

  • Studie: Apple Watch erkennt Diabetes mit 85 % Genauigkeit. 7. Februar 2018, archiviert vom Original am 13. Februar 2018; abgerufen am 2. Juli 2019.

rsna.org

pubs.rsna.org

  • Yiming Ding, Jae Ho Sohn, Michael G. Kawczynski, Hari Trivedi, Roy Harnish: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. In: Radiology. 6. November 2018, ISSN 0033-8419, S. 180958, doi:10.1148/radiol.2018180958 (rsna.org [abgerufen am 1. Dezember 2018]).

scinexx.de

smw.ch

  • Jeffrey David Iqbal, Rasita Vinay: Are we ready for Artificial Intelligence in Medicine? In: Swiss Medical Weekly. Nr. 19, 19. Mai 2022, doi:10.4414/smw.2022.w30179 (smw.ch [abgerufen am 26. August 2022]).

stanford.edu

hai.stanford.edu

statnews.com

sueddeutsche.de

  • Michael Moorstedt: Die blinden Flecken der künstlichen Intelligenzen. In: sueddeutsche.de. 11. August 2019, ISSN 0174-4917 (sueddeutsche.de [abgerufen am 13. August 2019]).

vice.com

motherboard.vice.com

web.archive.org

  • Studie: Apple Watch erkennt Diabetes mit 85 % Genauigkeit. 7. Februar 2018, archiviert vom Original am 13. Februar 2018; abgerufen am 2. Juli 2019.

zdb-katalog.de

  • Alanna Vial, David Stirling, Matthew Field, Montserrat Ros, Christian Ritz: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. In: Translational Cancer Research. Band 7, Nr. 3, 6. Juli 2018, ISSN 2219-6803, S. 803–816, doi:10.21037/21823 (amegroups.com [abgerufen am 9. Dezember 2018]).
  • Yiming Ding, Jae Ho Sohn, Michael G. Kawczynski, Hari Trivedi, Roy Harnish: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. In: Radiology. 6. November 2018, ISSN 0033-8419, S. 180958, doi:10.1148/radiol.2018180958 (rsna.org [abgerufen am 1. Dezember 2018]).
  • Cheryl M. Corcoran, Facundo Carrillo, Diego Fernández-Slezak, Gillinder Bedi, Casimir Klim: Prediction of psychosis across protocols and risk cohorts using automated language analysis. In: World Psychiatry. Band 17, Nr. 1, 19. Januar 2018, ISSN 1723-8617, S. 67–75, doi:10.1002/wps.20491, PMID 29352548.
  • Jeffrey David Iqbal, Nikola Biller-Andorno: The regulatory gap in digital health and alternative pathways to bridge it. In: Health Policy and Technology. Band 11, Nr. 3, 1. September 2022, ISSN 2211-8837, S. 100663, doi:10.1016/j.hlpt.2022.100663.
  • Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young: Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. In: Journal of The Royal Society Interface. Band 12, Nr. 104, 6. März 2015, ISSN 1742-5689, S. 20141289, doi:10.1098/rsif.2014.1289, PMID 25652463.
  • Michael Moorstedt: Die blinden Flecken der künstlichen Intelligenzen. In: sueddeutsche.de. 11. August 2019, ISSN 0174-4917 (sueddeutsche.de [abgerufen am 13. August 2019]).
  • Pantelis Linardatos, Vasilis Papastefanopoulos, Sotiris Kotsiantis: Explainable AI: A Review of Machine Learning Interpretability Methods. In: Entropy. Band 23, Nr. 1, 25. Dezember 2020, ISSN 1099-4300, S. 18, doi:10.3390/e23010018, PMID 33375658, PMC 7824368 (freier Volltext).
  • Boris Babic, Sara Gerke, Theodoros Evgeniou, I. Glenn Cohen: Beware explanations from AI in health care. In: Science. Band 373, Nr. 6552, 16. Juli 2021, ISSN 0036-8075, S. 284–286, doi:10.1126/science.abg1834.