Stuart Geman, E. Bienenstock, R. Doursat: Neural networks and the bias/variance dilemma. In: Neural Computation. 4. Jahrgang, 1992, S.1–58, doi:10.1162/neco.1992.4.1.1 (mit.edu [PDF]).
F. Gagliardi: Instance-based classifiers applied to medical databases: diagnosis and knowledge extraction. Artificial Intelligence in Medicine. Bande 52, Nr. 3 (2011), S. 123–139. Doi:10.1016/j.artmed.2011.04.002
Scott Fortmann-Roe: Understanding the Bias–Variance Tradeoff. 2012. [1]
mit.edu
web.mit.edu
Stuart Geman, E. Bienenstock, R. Doursat: Neural networks and the bias/variance dilemma. In: Neural Computation. 4. Jahrgang, 1992, S.1–58, doi:10.1162/neco.1992.4.1.1 (mit.edu [PDF]).
Trevor Hastie, Robert Tibshirani, JeromeFriedman: The Elements of Statistical Learning. 2009 (online).
nlp.stanford.edu
Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze: Introduction to Information Retrieval. Cambridge University Press, 2008, S.308–314 (online).
usc.edu
www-bcf.usc.edu
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani: An Introduction to Statistical Learning. Springer, 2013 (online).
washington.edu
homes.cs.washington.edu
Pedro Domingos: A unified bias-variance decomposition. ICML. 2000 (englisch, washington.edu [PDF]).