Committee on Abrupt Climate Change, Ocean Studies Board, Polar Research Board, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies, National Research Council. (2002). Abrupt climate change : inevitable surprises. Washington, D.C.: National Academy Press. σελ. 108. ISBN0-309-07434-7.CS1 maint: Πολλαπλές ονομασίες: authors list (link)
J. Hansen; M. Sato; P. Hearty; R. Ruedy και άλλοι. (2015). «Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous». Atmospheric Chemistry and Physics Discussions15 (14): 20059–20179. doi:10.5194/acpd-15-20059-2015. Bibcode: 2015ACPD...1520059H. http://www.atmos-chem-phys-discuss.net/acp-2015-432/. «Our results at least imply that strong cooling in the North Atlantic from AMOC shutdown does create higher wind speed. * * * The increment in seasonal mean wind speed of the northeasterlies relative to preindustrial conditions is as much as 10–20%. Such a percentage increase of wind speed in a storm translates into an increase of storm power dissipation by a factor ∼1.4–2, because wind power dissipation is proportional to the cube of wind speed. However, our simulated changes refer to seasonal mean winds averaged over large grid-boxes, not individual storms.* * * Many of the most memorable and devastating storms in eastern North America and western Europe, popularly known as superstorms, have been winter cyclonic storms, though sometimes occurring in late fall or early spring, that generate near-hurricane-force winds and often large amounts of snowfall. Continued warming of low latitude oceans in coming decades will provide more water vapor to strengthen such storms. If this tropical warming is combined with a cooler North Atlantic Ocean from AMOC slowdown and an increase in midlatitude eddy energy, we can anticipate more severe baroclinic storms.».
Grachev, A.M.; Severinghaus, J.P. (2005). «A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants». Quaternary Science Reviews24 (5–6): 513–9. doi:10.1016/j.quascirev.2004.10.016. Bibcode: 2005QSRv...24..513G.
Kobashi, T.; Severinghaus, J.P.; Barnola, J. (30 April 2008). «4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice». Earth and Planetary Science Letters268 (3–4): 397–407. doi:10.1016/j.epsl.2008.01.032. Bibcode: 2008E&PSL.268..397K.
Taylor, K.C.; White, J; Severinghaus, J; Brook, E; Mayewski, P; Alley, R; Steig, E; Spencer, M και άλλοι. (January 2004). «Abrupt climate change around 22 ka on the Siple Coast of Antarctica». Quaternary Science Reviews23 (1–2): 7–15. doi:10.1016/j.quascirev.2003.09.004. Bibcode: 2004QSRv...23....7T.
J. Hansen; M. Sato; P. Hearty; R. Ruedy και άλλοι. (2015). «Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous». Atmospheric Chemistry and Physics Discussions15 (14): 20059–20179. doi:10.5194/acpd-15-20059-2015. Bibcode: 2015ACPD...1520059H. http://www.atmos-chem-phys-discuss.net/acp-2015-432/. «Our results at least imply that strong cooling in the North Atlantic from AMOC shutdown does create higher wind speed. * * * The increment in seasonal mean wind speed of the northeasterlies relative to preindustrial conditions is as much as 10–20%. Such a percentage increase of wind speed in a storm translates into an increase of storm power dissipation by a factor ∼1.4–2, because wind power dissipation is proportional to the cube of wind speed. However, our simulated changes refer to seasonal mean winds averaged over large grid-boxes, not individual storms.* * * Many of the most memorable and devastating storms in eastern North America and western Europe, popularly known as superstorms, have been winter cyclonic storms, though sometimes occurring in late fall or early spring, that generate near-hurricane-force winds and often large amounts of snowfall. Continued warming of low latitude oceans in coming decades will provide more water vapor to strengthen such storms. If this tropical warming is combined with a cooler North Atlantic Ocean from AMOC slowdown and an increase in midlatitude eddy energy, we can anticipate more severe baroclinic storms.».
Lenton, Timothy M.; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim (27 November 2019). «Climate tipping points – too risky to bet against» (στα αγγλικά). Nature575 (7784): 592–595. doi:10.1038/d41586-019-03595-0. PMID31776487. Bibcode: 2019Natur.575..592L.
Zachos, J. C.; Röhl, U.; Schellenberg, S. A.; Sluijs, A.; Hodell, D. A.; Kelly, D. C.; Thomas, E.; Nicolo, M. και άλλοι. (Jun 2005). «Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum». Science308 (5728): 1611–1615. doi:10.1126/science.1109004. PMID15947184. Bibcode: 2005Sci...308.1611Z.
Grachev, A.M.; Severinghaus, J.P. (2005). «A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants». Quaternary Science Reviews24 (5–6): 513–9. doi:10.1016/j.quascirev.2004.10.016. Bibcode: 2005QSRv...24..513G.
Kobashi, T.; Severinghaus, J.P.; Barnola, J. (30 April 2008). «4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice». Earth and Planetary Science Letters268 (3–4): 397–407. doi:10.1016/j.epsl.2008.01.032. Bibcode: 2008E&PSL.268..397K.
Taylor, K.C.; White, J; Severinghaus, J; Brook, E; Mayewski, P; Alley, R; Steig, E; Spencer, M και άλλοι. (January 2004). «Abrupt climate change around 22 ka on the Siple Coast of Antarctica». Quaternary Science Reviews23 (1–2): 7–15. doi:10.1016/j.quascirev.2003.09.004. Bibcode: 2004QSRv...23....7T.
Mayewski, Paul Andrew (2016). «Abrupt climate change: Past, present and the search for precursors as an aid to predicting events in the future (Hans Oeschger Medal Lecture)». Egu General Assembly Conference Abstracts18: EPSC2016-2567. Bibcode: 2016EGUGA..18.2567M.
J. Hansen; M. Sato; P. Hearty; R. Ruedy και άλλοι. (2015). «Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous». Atmospheric Chemistry and Physics Discussions15 (14): 20059–20179. doi:10.5194/acpd-15-20059-2015. Bibcode: 2015ACPD...1520059H. http://www.atmos-chem-phys-discuss.net/acp-2015-432/. «Our results at least imply that strong cooling in the North Atlantic from AMOC shutdown does create higher wind speed. * * * The increment in seasonal mean wind speed of the northeasterlies relative to preindustrial conditions is as much as 10–20%. Such a percentage increase of wind speed in a storm translates into an increase of storm power dissipation by a factor ∼1.4–2, because wind power dissipation is proportional to the cube of wind speed. However, our simulated changes refer to seasonal mean winds averaged over large grid-boxes, not individual storms.* * * Many of the most memorable and devastating storms in eastern North America and western Europe, popularly known as superstorms, have been winter cyclonic storms, though sometimes occurring in late fall or early spring, that generate near-hurricane-force winds and often large amounts of snowfall. Continued warming of low latitude oceans in coming decades will provide more water vapor to strengthen such storms. If this tropical warming is combined with a cooler North Atlantic Ocean from AMOC slowdown and an increase in midlatitude eddy energy, we can anticipate more severe baroclinic storms.».
Lenton, Timothy M.; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim (27 November 2019). «Climate tipping points – too risky to bet against» (στα αγγλικά). Nature575 (7784): 592–595. doi:10.1038/d41586-019-03595-0. PMID31776487. Bibcode: 2019Natur.575..592L.
Zachos, J. C.; Röhl, U.; Schellenberg, S. A.; Sluijs, A.; Hodell, D. A.; Kelly, D. C.; Thomas, E.; Nicolo, M. και άλλοι. (Jun 2005). «Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum». Science308 (5728): 1611–1615. doi:10.1126/science.1109004. PMID15947184. Bibcode: 2005Sci...308.1611Z.
Zachos, J. C.; Röhl, U.; Schellenberg, S. A.; Sluijs, A.; Hodell, D. A.; Kelly, D. C.; Thomas, E.; Nicolo, M. και άλλοι. (Jun 2005). «Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum». Science308 (5728): 1611–1615. doi:10.1126/science.1109004. PMID15947184. Bibcode: 2005Sci...308.1611Z.
«Heinrich and Dansgaard–Oeschger Events». National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). NOAA. Αρχειοθετήθηκε από το πρωτότυπο στις 22 Δεκεμβρίου 2016. Ανακτήθηκε στις 10 Ιουνίου 2021.
«Heinrich and Dansgaard–Oeschger Events». National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). NOAA. Αρχειοθετήθηκε από το πρωτότυπο στις 22 Δεκεμβρίου 2016. Ανακτήθηκε στις 10 Ιουνίου 2021.