Baillie–PSW primality test (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Baillie–PSW primality test" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
low place
low place
26th place
20th place
1st place
1st place
2,242nd place
1,513th place
321st place
724th place
451st place
277th place
low place
low place
low place
low place
1,266th place
860th place
low place
low place
6th place
6th place
69th place
59th place
5th place
5th place
11th place
8th place
low place
low place
513th place
537th place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
7,566th place
low place
low place
low place
low place
low place
low place
6,328th place
4,345th place
5,032nd place
3,357th place

ams.org

mathscinet.ams.org

archive.org

arxiv.org

dartmouth.edu

math.dartmouth.edu

  • Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7. JSTOR 2006210.

docjar.org

doi.org

  • Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7. JSTOR 2006210.
  • Baillie, Robert; Wagstaff, Samuel S. Jr. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. JSTOR 2006406. MR 0583518.
  • Chen, Zhuo; Greene, John (August 2003). "Some Comments on Baillie–PSW Pseudoprimes" (PDF). The Fibonacci Quarterly. 41 (4): 334–344. doi:10.1080/00150517.2003.12428566.
  • Robert Baillie; Andrew Fiori; Samuel S. Wagstaff, Jr. (July 2021). "Strengthening the Baillie-PSW Primality Test". Mathematics of Computation. 90 (330): 1931–1955. arXiv:2006.14425. doi:10.1090/mcom/3616. ISSN 0025-5718. S2CID 220055722.
  • Wagstaff, Samuel S. Jr. (1982). "Pseudoprimes and a generalization of Artin's conjecture". Acta Arithmetica. 41 (2): 141–150. doi:10.4064/aa-41-2-141-150.
  • Arnault, F. (August 1995). "Constructing Carmichael Numbers Which Are Strong Pseudoprimes to Several Bases". Journal of Symbolic Computation. 20 (2): 151–161. doi:10.1006/jsco.1995.1042.
  • Albrecht, Martin R.; Massimo, Jake; Paterson, Kenneth G.; Somorovsky, Juraj (15 October 2018). Prime and Prejudice: Primality Testing Under Adversarial Conditions (PDF). ACM SIGSAC Conference on Computer and Communications Security 2018. Toronto: Association for Computing Machinery. pp. 281–298. doi:10.1145/3243734.3243787.

flintlib.org

free.fr

mpqs.free.fr

gmplib.org

iacr.org

eprint.iacr.org

java.net

hg.openjdk.java.net

jstor.org

  • Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7. JSTOR 2006210.
  • Baillie, Robert; Wagstaff, Samuel S. Jr. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. JSTOR 2006406. MR 0583518.

maplesoft.com

math.ca

fq.math.ca

metacpan.org

pseudoprime.com

sagemath.org

doc.sagemath.org

semanticscholar.org

api.semanticscholar.org

sourceforge.io

maxima.sourceforge.io

sympy.org

  • "SymPy". SymPy - A Python library for symbolic mathematics.

tmu.ac.jp

tnt.math.se.tmu.ac.jp

trnicely.net

u-bordeaux.fr

pari.math.u-bordeaux.fr

umn.edu

d.umn.edu

usyd.edu.au

magma.maths.usyd.edu.au

web.archive.org

wolfram.com

reference.wolfram.com

worldcat.org

search.worldcat.org