Bennett 1915. Bennett, Albert A. (December 1915). "Note on an Operation of the Third Grade". Annals of Mathematics. Second Series. 17 (2): 74–75. doi:10.2307/2007124. JSTOR2007124.
The maximum depth of recursion refers to the number of levels of activation of a procedure which exist during the deepest call of the procedure. Cornelius & Kirby (1975) Cornelius, B.J.; Kirby, G.H. (1975). "Depth of recursion and the ackermann function". BIT Numerical Mathematics. 15 (2): 144–150. doi:10.1007/BF01932687. S2CID120532578.
Bennett 1915. Bennett, Albert A. (December 1915). "Note on an Operation of the Third Grade". Annals of Mathematics. Second Series. 17 (2): 74–75. doi:10.2307/2007124. JSTOR2007124.
The maximum depth of recursion refers to the number of levels of activation of a procedure which exist during the deepest call of the procedure. Cornelius & Kirby (1975) Cornelius, B.J.; Kirby, G.H. (1975). "Depth of recursion and the ackermann function". BIT Numerical Mathematics. 15 (2): 144–150. doi:10.1007/BF01932687. S2CID120532578.