Menger sponge (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Menger sponge" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
451st place
277th place
2nd place
2nd place
513th place
537th place
5th place
5th place
1,997th place
1,295th place
7th place
7th place
742nd place
538th place
6,413th place
4,268th place
18th place
17th place
109th place
87th place
low place
low place
low place
low place
low place
low place
low place
low place
193rd place
152nd place

alt-fractals.blogspot.com (Global: low place; English: low place)

alt-fractals.blogspot.fr (Global: low place; English: low place)

  • Eric Baird (2011-08-18). "The Jerusalem Cube". Alt.Fractals. Retrieved 2013-03-13., published in Magazine Tangente 150, "l'art fractal" (2013), p. 45.

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Menger, Karl (1926), "Allgemeine Räume und Cartesische Räume. I.", Communications to the Amsterdam Academy of Sciences. English translation reprinted in Edgar, Gerald A., ed. (2004), Classics on fractals, Studies in Nonlinearity, Westview Press. Advanced Book Program, Boulder, CO, ISBN 978-0-8133-4153-8, MR 2049443
  • Quinn, John R. (2013). "Applications of the contraction mapping principle". In Carfì, David; Lapidus, Michel L.; Pearse, Erin P. J.; van Frankenhuijsen, Machiel (eds.). Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics. Contemporary Mathematics. Vol. 601. Providence, Rhode Island: American Mathematical Society. pp. 345–358. doi:10.1090/conm/601/11957. ISBN 978-0-8218-9148-3. MR 3203870.. See Example 2, p. 351.

books.google.com (Global: 3rd place; English: 3rd place)

  • Beck, Christian; Schögl, Friedrich (1995). Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press. p. 97. ISBN 9780521484510.
  • Bunde, Armin; Havlin, Shlomo (2013). Fractals in Science. Springer. p. 7. ISBN 9783642779534.
  • Menger, Karl (2013). Reminiscences of the Vienna Circle and the Mathematical Colloquium. Springer Science & Business Media. p. 11. ISBN 9789401111027.
  • Quinn, John R. (2013). "Applications of the contraction mapping principle". In Carfì, David; Lapidus, Michel L.; Pearse, Erin P. J.; van Frankenhuijsen, Machiel (eds.). Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics. Contemporary Mathematics. Vol. 601. Providence, Rhode Island: American Mathematical Society. pp. 345–358. doi:10.1090/conm/601/11957. ISBN 978-0-8218-9148-3. MR 3203870.. See Example 2, p. 351.

doi.org (Global: 2nd place; English: 2nd place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

huffingtonpost.com (Global: 109th place; English: 87th place)

megamenger.com (Global: low place; English: low place)

nytimes.com (Global: 7th place; English: 7th place)

oeis.org (Global: 742nd place; English: 538th place)

quantamagazine.org (Global: 6,413th place; English: 4,268th place)

robertdickau.com (Global: low place; English: low place)

ubc.ca (Global: 1,997th place; English: 1,295th place)

scienceres-edcp-educ.sites.olt.ubc.ca

wired.com (Global: 193rd place; English: 152nd place)

wolfram.com (Global: 513th place; English: 537th place)

demonstrations.wolfram.com

mathworld.wolfram.com

  • W., Weisstein, Eric. "Tetrix". mathworld.wolfram.com. Retrieved 8 May 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

  • Menger, Karl (1928), Dimensionstheorie, B.G Teubner, OCLC 371071