Smith chart (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Smith chart" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
5th place
5th place
2nd place
2nd place
316th place
190th place
low place
low place
11th place
8th place
low place
low place
70th place
63rd place
6th place
6th place
low place
low place
low place
low place
1,526th place
5,436th place
4,228th place
2,818th place
low place
8,202nd place
low place
low place
low place
7,456th place
low place
low place
low place
low place
low place
low place
43rd place
161st place
102nd place
76th place
4,521st place
4,877th place

analog.com

antenna-theory.com

  • Bevelacqua, Peter Joseph (2013-01-11) [2010]. "The Smith Chart". www.antenna-theory.com. Archived from the original on 2023-07-08. Retrieved 2023-07-09.

archive.org

  • Smith, Phillip Hagar (October 2000) [1995]. Electronic Applications of the Smith Chart: In Waveguide, Circuit and Component Analysis (2 ed.). Atlanta, Georgia, USA: Noble Publishing Corporation. ISBN 1-884932-39-8. LCCN 00-045239. ISBN 978-1-884932-39-7. p. xiv: […] From Fleming's equation,[A] and in an effort to simplify the solution of the transmission line problem, he developed his first graphical solution in the form of a rectangular plot. […] the diagram gradually evolved through a series of steps. The first rectangular chart was limited by the range of data it could accommodate. He was aware of the limitations and kept working on the problem until some time in 1936, when he developed a new diagram that eliminated most of the difficulties. The new chart was a special polar coordinate form in which all values of impedance components could be accommodated. The data for this diagram was scaled from the earlier rectangular diagram. The impedance coordinates in this case were not orthogonal and were not true circles, but, in the form chosen, the standing wave ratio was linear. The chart closely resembled what ultimately became the final result. Phil, however, suspected that a grid made up of a system of orthogonal circles might be more practical. He felt it would have distinct advantages, particularly as regards reproducibility. With this in mind, he spoke to two of his co-workers, E.B. Ferrell and J.W. McRae. Because they were familiar with the principles of conformal mapping, they were able to develop the transformation whereby all data from zero to infinity could be accommodated. Fortunately, curves of constant standing wave ratio, constant attenuation and constant reflection coefficient were all circles coaxial with the center of the diagram. The scales for these values, while not linear, were entirely satisfactory. A diagram designed along these lines was constructed in early 1937. It was essentially the form still being used today. Smith approached a number of technical magazines with regard to publication of the Chart, but acceptance was slow. There were not many technical magazines at the time, and none in the microwave area. However, in January of 1939, after a delay of two years, the article was printed in Electronics magazine. […] (xxvi+237+1 pages + envelope with 4 translucent plastic overlays) (NB. There is a 2006 reprint of the second edition by SciTech Publishing, Inc. under the same ISBN and LCCN.) Fleming, John Ambrose (January 1912) [May 1911]. The Propagation of Electric Currents in Telephone and Telegraph Conductors: A Course of Post-graduate Lectures Delivered Before the University of London (revised 2nd ed.). University College, London, UK: Constable & Company Ltd. ark:/13960/t3bz6211d. Retrieved 2023-07-23. (xiv+316 pages)
  • Davidson, Colin William (1989). Transmission Lines for Communications with CAD Programs (2 ed.). Basingstoke, Hampshire, UK: Macmillan Education Ltd. pp. 80–85. ISBN 0-333-47398-1. ark:/13960/s2dzmfrhg24. Retrieved 2023-07-09. (viii+244 pages)

bsuir.by

libeldoc.bsuir.by

  • Kurochkin [Курочкин], Alexander Evdokimovich [Александр Евдокимович] (2009). "Diagramma Vol'perta – Smita. Raschet i analiz kharakteristik usiliteley radiosignalov" Диаграмма Вольперта – Смита. Расчет и анализ характеристик усилителей радиосигналов [The Volpert–Smith diagram. Calculation and analysis of the characteristics of amplifiers of radio signals] (PDF) (in Russian). Minsk, Belarus: Department of Radio Engineering Devices, Belarusian State University of Informatics and Radio Electronics, Ministry of Education of the Republic of Belarus educational institution. ISBN 978-9-85-488-422-6. Archived (PDF) from the original on 2023-07-09. Retrieved 2023-07-09. p. 4: Diagramma Smita ostayetsya odnim iz naiboleye poleznykh graficheskikh instrumentov dlya razrabotki vysokochastotnykh usilitel'nykh kaskadov. V nashey strane analogichnaya diagramma izvestna kak krugovaya nomogramma A. R. Vol'perta, kotoryy v 1939 g. nezavisimo ot Smita razrabotal i primenil yeye dlya pereschota provodimostey i soprotivleniy v otrezkakh liniy peredachi. Диаграмма Смита остается одним из наиболее полезных графических инструментов для разработки высокочастотных усилительных каскадов. В нашей стране аналогичная диаграмма известна как круговая номограмма А. Р. Вольперта, который в 1939 г. независимо от Смита разработал и применил ее для пересчёта проводимостей и сопротивлений в отрезках линий передачи. [In our country, a similar diagram is known as a circular nomogram of A. R. Volpert, who in 1939, independently of Smith developed and applied it to recalculate conductances and resistances in segments of transmission lines.] [1][2][3] (40+1 pages)

doi.org

eandata.com

  • Kenichi [伊藤健], Ito [一著] (1999-11-01). Inpīdansu no hanashi インピーダンスのはなし [The story of impedance]. Science and Technology (in Japanese) (1 ed.). Nikkan Kogyo Shimbun [日刊工業新聞社]. p. 26. ISBN 4-526-04463-6. EAN 978-4-526-04463-2. 1923054018007. (4+xi+1+207+3+4 pages)

epfl.ch

infoscience.epfl.ch

ethw.org

handle.net

hdl.handle.net

linkclub.or.jp

  • Okamura [岡村], Fumiyoshi [史良] / Shirō [獅郎] (August 1959) [1959-04-04]. "Sumisuchāto wa nihonjin no dokusōde wanai ka" スミスチャートは日本人の独創ではないか ["Smith Chart" May Have Origin in Japan] (PDF). The Journal of the Institute of Electrical Communication Engineers of Japan [電気通信学会雑誌] (in Japanese). 1959 (8). Tokyo, Japan: Institute of Electrical Communication Engineers of Japan [電気通信学会]: 768–769 (44–45). ISSN 0914-5273. Archived from the original (PDF) on 2017-11-16. (2 pages) (NB. The article lists the author's given name as 史良 in Japanese, which would translate as "Fumiyoshi", whereas the English footnote in the same article transscribed it as "Shirō", which would be associated with 獅郎 in Japanese.)
  • Mori [森], Kunihiko [邦彦] (2013). "The Mizuhashi-Smith Chart". morikuni_net. Archived from the original on 2013-03-03. Retrieved 2023-06-24.
  • Mizuhashi [水橋], Tōsaku [東作] (December 1937) [1937-11-19]. "Sì duānzǐ huílù no inpīdansu hensei to seigō kairo no riron" 四端子回路のインピーダンス変成と整合回路の理論 [Theory of Four-Terminals Impedance Transformation Circuit and Matching Circuit] (PDF). The Journal of the Institute of Electrical Communication Engineers of Japan [電気通信学会雑誌] (in Japanese). 1937 (12). Institute of Electrical Communication Engineers of Japan [電気通信学会]: 1053–1058 (29–34). ISSN 0914-5273. Archived from the original (PDF) on 2017-11-16. (6 pages)

loc.gov

lccn.loc.gov

  • Smith, Phillip Hagar (June 1969). Written at Pine Brook, New Jersey, USA. Electronic Applications of the Smith Chart: In Waveguide, Circuit and Component Analysis (1 ed.). New York, USA: McGraw-Hill Book Company / Kay Electric Company. ISBN 0-07058930-5. LCCN 69-12411. ISBN 978-0-07058930-8. (xxvii+1+222 pages + envelope with 4 translucent plastic overlays + Kay Electric Company postcard) (NB. There is a 1983 reprint of the first edition by Robert E. Krieger Publishing Company with ISBN 978-0-89874-552-8, 0-89874-552-7, and a second edition by Noble Publishing Corporation.)
  • Smith, Phillip Hagar (October 2000) [1995]. Electronic Applications of the Smith Chart: In Waveguide, Circuit and Component Analysis (2 ed.). Atlanta, Georgia, USA: Noble Publishing Corporation. ISBN 1-884932-39-8. LCCN 00-045239. ISBN 978-1-884932-39-7. p. xiv: […] From Fleming's equation,[A] and in an effort to simplify the solution of the transmission line problem, he developed his first graphical solution in the form of a rectangular plot. […] the diagram gradually evolved through a series of steps. The first rectangular chart was limited by the range of data it could accommodate. He was aware of the limitations and kept working on the problem until some time in 1936, when he developed a new diagram that eliminated most of the difficulties. The new chart was a special polar coordinate form in which all values of impedance components could be accommodated. The data for this diagram was scaled from the earlier rectangular diagram. The impedance coordinates in this case were not orthogonal and were not true circles, but, in the form chosen, the standing wave ratio was linear. The chart closely resembled what ultimately became the final result. Phil, however, suspected that a grid made up of a system of orthogonal circles might be more practical. He felt it would have distinct advantages, particularly as regards reproducibility. With this in mind, he spoke to two of his co-workers, E.B. Ferrell and J.W. McRae. Because they were familiar with the principles of conformal mapping, they were able to develop the transformation whereby all data from zero to infinity could be accommodated. Fortunately, curves of constant standing wave ratio, constant attenuation and constant reflection coefficient were all circles coaxial with the center of the diagram. The scales for these values, while not linear, were entirely satisfactory. A diagram designed along these lines was constructed in early 1937. It was essentially the form still being used today. Smith approached a number of technical magazines with regard to publication of the Chart, but acceptance was slow. There were not many technical magazines at the time, and none in the microwave area. However, in January of 1939, after a delay of two years, the article was printed in Electronics magazine. […] (xxvi+237+1 pages + envelope with 4 translucent plastic overlays) (NB. There is a 2006 reprint of the second edition by SciTech Publishing, Inc. under the same ISBN and LCCN.) Fleming, John Ambrose (January 1912) [May 1911]. The Propagation of Electric Currents in Telephone and Telegraph Conductors: A Course of Post-graduate Lectures Delivered Before the University of London (revised 2nd ed.). University College, London, UK: Constable & Company Ltd. ark:/13960/t3bz6211d. Retrieved 2023-07-23. (xiv+316 pages)

semanticscholar.org

api.semanticscholar.org

tek.com

ti.com

up.edu

faculty.up.edu

vdoc.pub

vk.com

  • Kurochkin [Курочкин], Alexander Evdokimovich [Александр Евдокимович] (2009). "Diagramma Vol'perta – Smita. Raschet i analiz kharakteristik usiliteley radiosignalov" Диаграмма Вольперта – Смита. Расчет и анализ характеристик усилителей радиосигналов [The Volpert–Smith diagram. Calculation and analysis of the characteristics of amplifiers of radio signals] (PDF) (in Russian). Minsk, Belarus: Department of Radio Engineering Devices, Belarusian State University of Informatics and Radio Electronics, Ministry of Education of the Republic of Belarus educational institution. ISBN 978-9-85-488-422-6. Archived (PDF) from the original on 2023-07-09. Retrieved 2023-07-09. p. 4: Diagramma Smita ostayetsya odnim iz naiboleye poleznykh graficheskikh instrumentov dlya razrabotki vysokochastotnykh usilitel'nykh kaskadov. V nashey strane analogichnaya diagramma izvestna kak krugovaya nomogramma A. R. Vol'perta, kotoryy v 1939 g. nezavisimo ot Smita razrabotal i primenil yeye dlya pereschota provodimostey i soprotivleniy v otrezkakh liniy peredachi. Диаграмма Смита остается одним из наиболее полезных графических инструментов для разработки высокочастотных усилительных каскадов. В нашей стране аналогичная диаграмма известна как круговая номограмма А. Р. Вольперта, который в 1939 г. независимо от Смита разработал и применил ее для пересчёта проводимостей и сопротивлений в отрезках линий передачи. [In our country, a similar diagram is known as a circular nomogram of A. R. Volpert, who in 1939, independently of Smith developed and applied it to recalculate conductances and resistances in segments of transmission lines.] [1][2][3] (40+1 pages)

web.archive.org

wikidata.org

wikipedia.org

ro.wikipedia.org

ru.wikipedia.org

worldcat.org

worldradiohistory.com