Waring's problem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Waring's problem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
26th place
20th place
18th place
17th place
5th place
5th place
2,594th place
2,546th place
1,923rd place
1,068th place
621st place
380th place
6th place
6th place
2,224th place
1,900th place
8,783rd place
low place

ams.org

mathscinet.ams.org

  • Hilbert, David (1909). "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)". Mathematische Annalen (in German). 67 (3): 281–300. doi:10.1007/bf01450405. MR 1511530. S2CID 179177986.
  • Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François (1986). "Problème de Waring pour les bicarrés. I. Schéma de la solution" [Waring's problem for biquadrates. I. Sketch of the solution]. Comptes Rendus de l'Académie des Sciences, Série I (in French). 303 (4): 85–88. MR 0853592.
  • Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François (1986). "Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique" [Waring's problem for biquadrates. II. Auxiliary results for the asymptotic theorem]. Comptes Rendus de l'Académie des Sciences, Série I (in French). 303 (5): 161–163. MR 0854724.
  • Pillai, S. S. (1940). "On Waring's problem g(6) = 73". Proc. Indian Acad. Sci. 12: 30–40. doi:10.1007/BF03170721. MR 0002993. S2CID 185097940.
  • Niven, Ivan M. (1944). "An unsolved case of the Waring problem". American Journal of Mathematics. 66 (1). The Johns Hopkins University Press: 137–143. doi:10.2307/2371901. JSTOR 2371901. MR 0009386.
  • Mahler, Kurt (1957). "On the fractional parts of the powers of a rational number II". Mathematika. 4 (2): 122–124. doi:10.1112/s0025579300001170. MR 0093509.
  • Kubina, Jeffrey M.; Wunderlich, Marvin C. (1990). "Extending Waring's conjecture to 471,600,000". Math. Comp. 55 (192): 815–820. Bibcode:1990MaCom..55..815K. doi:10.2307/2008448. JSTOR 2008448. MR 1035936.
  • Vaughan, R. C.; Wooley, Trevor (2002). "Waring's Problem: A Survey". In Bennet, Michael A.; Berndt, Bruce C.; Boston, Nigel; Diamond, Harold G.; Hildebrand, Adolf J.; Philipp, Walter (eds.). Number Theory for the Millennium. Vol. III. Natick, MA: A. K. Peters. pp. 301–340. ISBN 978-1-56881-152-9. MR 1956283.

archive.org

doi.org

ethz.ch

math.ethz.ch

harvard.edu

ui.adsabs.harvard.edu

jstor.org

mathnet.ru

semanticscholar.org

api.semanticscholar.org

  • Hilbert, David (1909). "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)". Mathematische Annalen (in German). 67 (3): 281–300. doi:10.1007/bf01450405. MR 1511530. S2CID 179177986.
  • Wieferich, Arthur (1909). "Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen läßt". Mathematische Annalen (in German). 66 (1): 95–101. doi:10.1007/BF01450913. S2CID 121386035.
  • Kempner, Aubrey (1912). "Bemerkungen zum Waringschen Problem". Mathematische Annalen (in German). 72 (3): 387–399. doi:10.1007/BF01456723. S2CID 120101223.
  • Pillai, S. S. (1940). "On Waring's problem g(6) = 73". Proc. Indian Acad. Sci. 12: 30–40. doi:10.1007/BF03170721. MR 0002993. S2CID 185097940.

uni-goettingen.de

dz-srv1.sub.uni-goettingen.de

worldcat.org

search.worldcat.org

  • Hardy, G. H.; Littlewood, J. E. (1922). "Some problems of Partitio Numerorum: IV. The singular series in Waring's Problem and the value of the number G(k)". Mathematische Zeitschrift. 12 (1): 161–188. doi:10.1007/BF01482074. ISSN 0025-5874.
  • Vaughan, R. C. (1989). "A new iterative method in Waring's problem". Acta Mathematica. 162: 1–71. doi:10.1007/BF02392834. ISSN 0001-5962.
  • Deshouillers, Jean-Marc; Kawada, Koichi; Wooley, Trevor D. (2005). "On Sums of Sixteen Biquadrates". Mémoires de la Société Mathématique de France. 1: 1–120. doi:10.24033/msmf.413. ISSN 0249-633X.

zbmath.org

zenodo.org

  • Hilbert, David (1909). "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)". Mathematische Annalen (in German). 67 (3): 281–300. doi:10.1007/bf01450405. MR 1511530. S2CID 179177986.