Wess–Zumino–Witten model (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Wess–Zumino–Witten model" in English language version.

refsWebsite
Global rank English rank
69th place
59th place
18th place
17th place
2nd place
2nd place
11th place
8th place
1,959th place
1,611th place
3,707th place
2,409th place
low place
low place
5th place
5th place
4th place
4th place

arxiv.org

  • Maldacena, J.; Ooguri, H. (2001). "Strings in AdS3 and the SL(2,R) WZW model. I: The spectrum". Journal of Mathematical Physics. 42 (7): 2929–2960. arXiv:hep-th/0001053. Bibcode:2001JMP....42.2929M. doi:10.1063/1.1377273. S2CID 8841465.
  • V. Schomerus, H. Saleur, "The GL(1|1) WZW model: From supergeometry to logarithmic CFT", arxiv:hep-th/0510032
  • G. Gotz, T. Quella, V. Schomerus, "The WZNW model on PSU(1,1|2)", arxiv:hep-th/0610070
  • K. Gawedzki, "Non-Compact WZW Conformal Field Theories", arxiv:hep-th/9110076
  • G. Felder, C. Wieczerkowski, "Conformal blocks on elliptic curves and the Knizhnik--Zamolodchikov--Bernard equations", arxiv:hep-th/9411004
  • N. Berkovits, C. Vafa, E. Witten, "Conformal Field Theory of AdS Background with Ramond-Ramond Flux", arxiv:hep-th/9902098
  • M. Zirnbauer, "The integer quantum Hall plateau transition is a current algebra after all", arXiv:1805.12555
  • N. Robertson, J. Jacobsen, H. Saleur, "Conformally invariant boundary conditions in the antiferromagnetic Potts model and the sigma model", arXiv:1906.07565

cern.ch

cds.cern.ch

  • Wess, J.; Zumino, B. (1971). "Consequences of anomalous ward identities" (PDF). Physics Letters B. 37 (1): 95–97. Bibcode:1971PhLB...37...95W. doi:10.1016/0370-2693(71)90582-X.

doi.org

  • Wess, J.; Zumino, B. (1971). "Consequences of anomalous ward identities" (PDF). Physics Letters B. 37 (1): 95–97. Bibcode:1971PhLB...37...95W. doi:10.1016/0370-2693(71)90582-X.
  • Witten, E. (1983). "Global aspects of current algebra". Nuclear Physics B. 223 (2): 422–432. Bibcode:1983NuPhB.223..422W. doi:10.1016/0550-3213(83)90063-9.
  • Witten, E. (1984). "Non-abelian bosonization in two dimensions". Communications in Mathematical Physics. 92 (4): 455–472. Bibcode:1984CMaPh..92..455W. doi:10.1007/BF01215276. S2CID 122018499.
  • Novikov, S. P. (1981). "Multivalued functions and functionals. An analogue of the Morse theory". Sov. Math., Dokl. 24: 222–226.; Novikov, S. P. (1982). "The Hamiltonian formalism and a many-valued analogue of Morse theory". Russian Mathematical Surveys. 37 (5): 1–9. Bibcode:1982RuMaS..37....1N. doi:10.1070/RM1982v037n05ABEH004020. S2CID 250867649.
  • Maldacena, J.; Ooguri, H. (2001). "Strings in AdS3 and the SL(2,R) WZW model. I: The spectrum". Journal of Mathematical Physics. 42 (7): 2929–2960. arXiv:hep-th/0001053. Bibcode:2001JMP....42.2929M. doi:10.1063/1.1377273. S2CID 8841465.
  • Braaten, E.; Curtright, T. L.; Zachos, C. K. (1985). "Torsion and geometrostasis in nonlinear sigma models". Nuclear Physics B. 260 (3–4): 630. Bibcode:1985NuPhB.260..630B. doi:10.1016/0550-3213(85)90053-7.
  • Witten, Edward (1991). "String theory and black holes". Physical Review D. 44 (2): 314–324. Bibcode:1991PhRvD..44..314W. doi:10.1103/PhysRevD.44.314. ISSN 0556-2821. PMID 10013884.

harvard.edu

ui.adsabs.harvard.edu

  • Wess, J.; Zumino, B. (1971). "Consequences of anomalous ward identities" (PDF). Physics Letters B. 37 (1): 95–97. Bibcode:1971PhLB...37...95W. doi:10.1016/0370-2693(71)90582-X.
  • Witten, E. (1983). "Global aspects of current algebra". Nuclear Physics B. 223 (2): 422–432. Bibcode:1983NuPhB.223..422W. doi:10.1016/0550-3213(83)90063-9.
  • Witten, E. (1984). "Non-abelian bosonization in two dimensions". Communications in Mathematical Physics. 92 (4): 455–472. Bibcode:1984CMaPh..92..455W. doi:10.1007/BF01215276. S2CID 122018499.
  • Novikov, S. P. (1981). "Multivalued functions and functionals. An analogue of the Morse theory". Sov. Math., Dokl. 24: 222–226.; Novikov, S. P. (1982). "The Hamiltonian formalism and a many-valued analogue of Morse theory". Russian Mathematical Surveys. 37 (5): 1–9. Bibcode:1982RuMaS..37....1N. doi:10.1070/RM1982v037n05ABEH004020. S2CID 250867649.
  • Maldacena, J.; Ooguri, H. (2001). "Strings in AdS3 and the SL(2,R) WZW model. I: The spectrum". Journal of Mathematical Physics. 42 (7): 2929–2960. arXiv:hep-th/0001053. Bibcode:2001JMP....42.2929M. doi:10.1063/1.1377273. S2CID 8841465.
  • Braaten, E.; Curtright, T. L.; Zachos, C. K. (1985). "Torsion and geometrostasis in nonlinear sigma models". Nuclear Physics B. 260 (3–4): 630. Bibcode:1985NuPhB.260..630B. doi:10.1016/0550-3213(85)90053-7.
  • Witten, Edward (1991). "String theory and black holes". Physical Review D. 44 (2): 314–324. Bibcode:1991PhRvD..44..314W. doi:10.1103/PhysRevD.44.314. ISSN 0556-2821. PMID 10013884.

nih.gov

pubmed.ncbi.nlm.nih.gov

projecteuclid.org

scholarpedia.org

semanticscholar.org

api.semanticscholar.org

worldcat.org

search.worldcat.org