Orfaj genoj (Esperanto Wikipedia)

Analysis of information sources in references of the Wikipedia article "Orfaj genoj" in Esperanto language version.

refsWebsite
Global rank Esperanto rank
2nd place
7th place
18th place
45th place
3rd place
6th place
low place
9,566th place
4th place
9th place

books.google.com

doi.org

  • (1a de Septembro 1999) “Finding families for genomic ORFans”, Bioinformatics 15 (9), p. 759–762. doi:10.1093/bioinformatics/15.9.759. 
  • (2011) “The evolutionary origin of orphan genes”, Nature Reviews Genetics 12 (10), p. 692–702. doi:10.1038/nrg3053. 
  • (2009) “More than just orphans: are taxonomically-restricted genes important in evolution?”, Trends in Genetics 25 (9), p. 404–413. doi:10.1016/j.tig.2009.07.006. 
  • (2008-09-01) “On the origin of new genes in Drosophila”, Genome Research 18 (9), p. 1446–1455. doi:10.1101/gr.076588.108. 
  • (2009) “Origin of primate orphan genes: a comparative genomics approach”, Molecular Biology and Evolution 26 (3), p. 603–612. doi:10.1093/molbev/msn281. 
  • (2013) “Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes”, Genome Biology and Evolution 5 (2), p. 439–455. doi:10.1093/gbe/evt009. 
  • (2013-10-17) “De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences”, PLoS Genet 9 (10), p. e1003860. doi:10.1371/journal.pgen.1003860. 
  • (2014-01-02) “NCYM, a Cis-Antisense Gene of MYCN, Encodes a De Novo Evolved Protein That Inhibits GSK3β Resulting in the Stabilization of MYCN in Human Neuroblastomas”, PLoS Genet 10 (1), p. e1003996. doi:10.1371/journal.pgen.1003996. 
  • (1977-06-10) “Evolution and tinkering”, Science (en) 196 (4295), p. 1161–1166. doi:10.1126/science.860134. Bibkodo:1977Sci...196.1161J. 
  • (2005) “Orphans as taxonomically restricted and ecologically important genes”, Microbiology 151 (8), p. 2499–2501. doi:10.1099/mic.0.28146-0. 
  • (2008-05-01) “De Novo Origination of a New Protein-Coding Gene in Saccharomyces cerevisiae”, Genetics (en) 179 (1), p. 487–496. doi:10.1534/genetics.107.084491. 
  • (2009) “Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves”, The Plant Journal 58 (3), p. 485–498. doi:10.1111/j.1365-313X.2009.03793.x. 
  • (2015) “The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions”, Proc. Natl. Acad. Sci. 112 (47), p. 14734–14739. doi:10.1073/pnas.1514670112. Bibkodo:2015PNAS..11214734L. 
  • (2011) “Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana”, BMC Evolutionary Biology 11 (1), p. 47. doi:10.1186/1471-2148-11-47. 
  • (1a de Septembro 1997) “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Research 25 (17), p. 3389–3402. doi:10.1093/nar/25.17.3389. 
  • (2007) “On homology searches by protein BLAST and the characterization of the age of genes”, BMC Evol. Biol. 7, p. 53. doi:10.1186/1471-2148-7-53. 
  • (13 October 2014) “Phylostratigraphic Bias Creates Spurious Patterns of Genome Evolution”, Molecular Biology and Evolution 32 (1), p. 258–267. doi:10.1093/molbev/msu286. 
  • (2007-01-11) “A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages”, Trends in Genetics 23 (11), p. 533–539. doi:10.1016/j.tig.2007.08.014. 
  • (31 August 2015) “New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation”, Philosophical Transactions of the Royal Society B: Biological Sciences 370 (1678), p. 20140332. doi:10.1098/rstb.2014.0332. 
  • (19a de Februaro 2014) “The life cycle of orphan genes”, eLife 3, p. e01311. doi:10.7554/eLife.01311. 
  • (2014-02-14) “Origin and Spread of de Novo Genes in Drosophila melanogaster Populations”, Science (en) 343 (6172), p. 769–772. doi:10.1126/science.1248286. Bibkodo:2014Sci...343..769Z. 
  • (2006-06-27) “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression”, Proceedings of the National Academy of Sciences (en) 103 (26), p. 9935–9939. doi:10.1073/pnas.0509809103. Bibkodo:2006PNAS..103.9935L. 
  • (2009-09-29) “Emergence of a New Gene from an Intergenic Region”, Current Biology 19 (18), p. 1527–1531. doi:10.1016/j.cub.2009.07.049. 
  • (2010-12-17) “New Genes in Drosophila Quickly Become Essential”, Science (en) 330 (6011), p. 1682–1685. doi:10.1126/science.1196380. Bibkodo:2010Sci...330.1682C. 
  • (2013-10-17) “De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences”, PLOS Genet 9 (10), p. e1003860. doi:10.1371/journal.pgen.1003860. 
  • (2013) “Extensive Natural Epigenetic Variation at a De Novo Originated Gene”, PLoS Genetics 9 (4), p. e1003437. doi:10.1371/journal.pgen.1003437. 
  • (2014-03-17) “Evolution: Dynamics of De Novo Gene Emergence”, Current Biology 24 (6), p. R238–R240. doi:10.1016/j.cub.2014.02.016. 
  • (2016-01-11) “Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution”, Molecular Biology and Evolution (en) 33 (5), p. 1245–56. doi:10.1093/molbev/msw008. 
  • (2004-11-01) “The altered evolutionary trajectories of gene duplicates”, Trends in Genetics 20 (11), p. 544–549. doi:10.1016/j.tig.2004.09.001. 
  • (November 2014) “Coming of age: orphan genes in plants”, Trends in Plant Science 19 (11), p. 698–708. doi:10.1016/j.tplants.2014.07.003. 
  • (Junio 2015) “Elucidating evolutionary features and functional implications of orphan genes in Leishmania major”, Infection, Genetics and Evolution 32, p. 330–337. doi:10.1016/j.meegid.2015.03.031. 
  • (24a de Aprilo 2017) “Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth”, Nature Ecology & Evolution 1 (6), p. 0146–146. doi:10.1038/s41559-017-0146. 
  • (19 July 2018) “Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes”, Genetics 210 (1), p. 303–313. doi:10.1534/genetics.118.301249. 
  • (November 2017) “Foldability of a Natural De Novo Evolved Protein”, Structure 25 (11), p. 1687–1696.e4. doi:10.1016/j.str.2017.09.006. 

genetics.org

harvard.edu

ui.adsabs.harvard.edu

nih.gov

blast.ncbi.nlm.nih.gov