(2011) “The evolutionary origin of orphan genes”, Nature Reviews Genetics12 (10), p. 692–702. doi:10.1038/nrg3053.
(2009) “More than just orphans: are taxonomically-restricted genes important in evolution?”, Trends in Genetics25 (9), p. 404–413. doi:10.1016/j.tig.2009.07.006.
(2008-09-01) “On the origin of new genes in Drosophila”, Genome Research18 (9), p. 1446–1455. doi:10.1101/gr.076588.108.
(2009) “Origin of primate orphan genes: a comparative genomics approach”, Molecular Biology and Evolution26 (3), p. 603–612. doi:10.1093/molbev/msn281.
(2013) “Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes”, Genome Biology and Evolution5 (2), p. 439–455. doi:10.1093/gbe/evt009.
(2013-10-17) “De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences”, PLoS Genet9 (10), p. e1003860. doi:10.1371/journal.pgen.1003860.
(2014-01-02) “NCYM, a Cis-Antisense Gene of MYCN, Encodes a De Novo Evolved Protein That Inhibits GSK3β Resulting in the Stabilization of MYCN in Human Neuroblastomas”, PLoS Genet10 (1), p. e1003996. doi:10.1371/journal.pgen.1003996.
(2009) “Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves”, The Plant Journal58 (3), p. 485–498. doi:10.1111/j.1365-313X.2009.03793.x.
(2015) “The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions”, Proc. Natl. Acad. Sci.112 (47), p. 14734–14739. doi:10.1073/pnas.1514670112. Bibkodo:2015PNAS..11214734L.
(2011) “Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana”, BMC Evolutionary Biology11 (1), p. 47. doi:10.1186/1471-2148-11-47.
(1a de Septembro 1997) “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Research25 (17), p. 3389–3402. doi:10.1093/nar/25.17.3389.
(2007) “On homology searches by protein BLAST and the characterization of the age of genes”, BMC Evol. Biol.7, p. 53. doi:10.1186/1471-2148-7-53.
(13 October 2014) “Phylostratigraphic Bias Creates Spurious Patterns of Genome Evolution”, Molecular Biology and Evolution32 (1), p. 258–267. doi:10.1093/molbev/msu286.
(2007-01-11) “A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages”, Trends in Genetics23 (11), p. 533–539. doi:10.1016/j.tig.2007.08.014.
(31 August 2015) “New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation”, Philosophical Transactions of the Royal Society B: Biological Sciences370 (1678), p. 20140332. doi:10.1098/rstb.2014.0332.
(19a de Februaro 2014) “The life cycle of orphan genes”, eLife3, p. e01311. doi:10.7554/eLife.01311.
(2006-06-27) “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression”, Proceedings of the National Academy of Sciences (en) 103 (26), p. 9935–9939. doi:10.1073/pnas.0509809103. Bibkodo:2006PNAS..103.9935L.
(2009-09-29) “Emergence of a New Gene from an Intergenic Region”, Current Biology19 (18), p. 1527–1531. doi:10.1016/j.cub.2009.07.049.
(2013-10-17) “De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences”, PLOS Genet9 (10), p. e1003860. doi:10.1371/journal.pgen.1003860.
(2013) “Extensive Natural Epigenetic Variation at a De Novo Originated Gene”, PLoS Genetics9 (4), p. e1003437. doi:10.1371/journal.pgen.1003437.
(2014-03-17) “Evolution: Dynamics of De Novo Gene Emergence”, Current Biology24 (6), p. R238–R240. doi:10.1016/j.cub.2014.02.016.
(2016-01-11) “Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution”, Molecular Biology and Evolution (en) 33 (5), p. 1245–56. doi:10.1093/molbev/msw008.
(2004-11-01) “The altered evolutionary trajectories of gene duplicates”, Trends in Genetics20 (11), p. 544–549. doi:10.1016/j.tig.2004.09.001.
(November 2014) “Coming of age: orphan genes in plants”, Trends in Plant Science19 (11), p. 698–708. doi:10.1016/j.tplants.2014.07.003.
(Junio 2015) “Elucidating evolutionary features and functional implications of orphan genes in Leishmania major”, Infection, Genetics and Evolution32, p. 330–337. doi:10.1016/j.meegid.2015.03.031.
(24a de Aprilo 2017) “Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth”, Nature Ecology & Evolution1 (6), p. 0146–146. doi:10.1038/s41559-017-0146.
(19 July 2018) “Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes”, Genetics210 (1), p. 303–313. doi:10.1534/genetics.118.301249.
(November 2017) “Foldability of a Natural De Novo Evolved Protein”, Structure25 (11), p. 1687–1696.e4. doi:10.1016/j.str.2017.09.006.
(2015) “The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions”, Proc. Natl. Acad. Sci.112 (47), p. 14734–14739. doi:10.1073/pnas.1514670112. Bibkodo:2015PNAS..11214734L.
(2006-06-27) “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression”, Proceedings of the National Academy of Sciences (en) 103 (26), p. 9935–9939. doi:10.1073/pnas.0509809103. Bibkodo:2006PNAS..103.9935L.