Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). «Martian sub-surface ionising radiation: biosignatures and geology». Biogeosciences4 (4): 545-558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Consultado el 1 de junio de 2013. «This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. [..] Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs.»
books.google.com
Kieffer, Hugh H. (1992). Mars. University of Arizona Press. ISBN978-0-8165-1257-7. Consultado el 7 de marzo de 2011.
Didymus, JohnThomas (21 de enero de 2013). «Scientists find evidence Mars subsurface could hold life». Digital Journal – Science. «There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.»
Didymus, JohnThomas (21 de enero de 2013). «Scientists find evidence Mars subsurface could hold life». Digital Journal – Science. «There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.»
Didymus, JohnThomas (21 de enero de 2013). «Scientists find evidence Mars subsurface could hold life». Digital Journal – Science. «There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.»
Didymus, JohnThomas (21 de enero de 2013). «Scientists find evidence Mars subsurface could hold life». Digital Journal – Science. «There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.»
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). «Spectral evidence for hydrated salts in recurring slope lineae on Mars». Nature Geoscience8 (11): 829-832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546.
Bibring, J.-P.; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; Omega Team, the; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V. et al. (2004). «Perennial Water Ice Identified in the South Polar Cap of Mars». Nature428 (6983): 627-630. Bibcode:2004Natur.428..627B. PMID15024393. doi:10.1038/nature02461.
Villanueva, G.; Mumma, M.; Novak, R.; Käufl, H.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A. et al. (2015). «Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs». Science348 (6231): 218-221. Bibcode:2015Sci...348..218V. PMID25745065. doi:10.1126/science.aaa3630.Se sugiere usar |número-autores= (ayuda)
Baker, V.R.; Strom, R.G.; Gulick, V.C.; Kargel, J.S.; Komatsu, G.; Kale, V.S. (1991). «Ancient oceans, ice sheets and the hydrological cycle on Mars». Nature352 (6348): 589-594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0.
Parker, T.J.; Saunders, R.S.; Schneeberger, D.M. (1989). «Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary». Icarus82: 111-145. Bibcode:1989Icar...82..111P. doi:10.1016/0019-1035(89)90027-4.
Dohm, J.M.; Baker, Victor R.; Boynton, William V.; Fairén, Alberto G.; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong J.; Komatsu, Goro; Mahaney, William C.; Schulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruiz, Javier; Wheelock, Shawn J. (2009). «GRS Evidence and the Possibility of Paleooceans on Mars». Planetary and Space Science57 (5–6): 664-684. Bibcode:2009P&SS...57..664D. doi:10.1016/j.pss.2008.10.008.
Clifford, S.M.; Parker, T.J. (2001). «The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains». Icarus154: 40-79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671.
Fassett, C. I.; Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R. (2010). «Supraglacial and Proglacial Valleys on Amazonian Mars». Icarus208 (1): 86-100. Bibcode:2010Icar..208...86F. doi:10.1016/j.icarus.2010.02.021.
Heisinger, H.; Head, J. (2002). «Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history». Planet. Space Sci.50 (10–11): 939-981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5.
Glotch, T.; Christensen, P. (2005). «Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history». J. Geophys. Res.110: E09006. Bibcode:2005JGRE..110.9006G. doi:10.1029/2004JE002389.
Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. (2005). «An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits». Journal of Geophysical Research110: E12S14. Bibcode:2005JGRE..11012S14H. doi:10.1029/2005JE002459.
Harrison, K; Grimm, R. (2005). «Groundwater-controlled valley networks and the decline of surface runoff on early Mars». Journal of Geophysical Research110: E12S16. Bibcode:2005JGRE..11012S16H. doi:10.1029/2005JE002455.
Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). «Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars». J. Geophys. Res. Planets121 (2): 194-232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891.
Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). «Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars». J. Geophys. Res. Planets121 (2): 194-232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891.
Fassett, C.; Head, III (2008). «Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology». Icarus198: 37-56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016.
Head, J. (2006). «Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation». Geophys. Res. Lett.33 (8): 33. Bibcode:2006GeoRL..33.8S03H. doi:10.1029/2005gl024360.
Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). «Martian sub-surface ionising radiation: biosignatures and geology». Biogeosciences4 (4): 545-558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Consultado el 1 de junio de 2013. «This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. [..] Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs.»
Spinrad, H.; Münch, G.; Kaplan, L. D. (1963). «Letter to the Editor: the Detection of Water Vapor on Mars». Astrophysical Journal137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613.
Kliore, A. (1965). «Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere». Science149 (3689): 1243-1248. PMID17747455. doi:10.1126/science.149.3689.1243.
Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Tokar, R. L. (2004). «Global distribution of near-surface hydrogen on Mars». Journal of Geophysical Research109: E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. E09006.
Plaut, J. J. (15 de marzo de 2007). «Subsurface Radar Sounding of the South Polar Layered Deposits of Mars». Science316 (5821): 92-95. PMID17363628. doi:10.1126/science.1139672.
Shean, D. (2005). «Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit». Journal of Geophysical Research110 (E5): E05001. Bibcode:2005JGRE..11005001S. doi:10.1029/2004JE002360.
Basilevsky, A. (2006). «Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars». Geophysical Research Letters33. L13201. Bibcode:2006GeoRL..3313201B. doi:10.1029/2006GL026396.
Milliken, R. (2003). «Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images». Journal of Geophysical Research108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002je002005.
Head, J. W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; van Gasselt, S.; HRSC Co-Investigator Team (2005). «Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars». Nature434 (7031): 346-350. Bibcode:2005Natur.434..346H. PMID15772652. doi:10.1038/nature03359.
Mustard, J. (2001). «Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice». Nature412 (6845): 411-4. PMID11473309. doi:10.1038/35086515.
Shean, David E. (2005). «Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit». Journal of Geophysical Research110. Bibcode:2005JGRE..11005001S. doi:10.1029/2004JE002360.
Dickson, James L.; Head, James W.; Marchant, David R. (2008). «Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases». Geology36 (5): 411-4. doi:10.1130/G24382A.1.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'condiciones como las que se dan en Marte, fuera del régimen de temperature-presión estable del agua líquida' … 'El agua líquida es típicamente estable en las menores elevaciones y en las latitudes bajas del planeta, porque la presión atmosférica es mayor que la presión de vapor del agua, y las temperaturas de la superficie en las regiones equatoriales pueden alcanzar 220 K (-53 C) en períodos del día.
Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). «Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water». Icarus205: 113-137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
Musselwhite, Donald S.; Swindle, Timothy D.; Lunine, Jonathan I. (2001). «Liquid CO2 breakout and the formation of recent small gullies on Mars». Geophysical Research Letters28 (7): 1283-1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496.
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). «Spectral evidence for hydrated salts in recurring slope lineae on Mars». Nature Geoscience8 (11): 829-832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546.
Arvidson, R; Gooding, James L.; Moore, Henry J. (1989). «The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers». Review of Geophysics27: 39-60. Bibcode:1989RvGeo..27...39A. doi:10.1029/RG027i001p00039.
Clark, B.; Baird, AK; Rose Jr., HJ; Toulmin P, 3rd; Keil, K; Castro, AJ; Kelliher, WC; Rowe, CD et al. (1976). «Inorganic Analysis of Martian Samples at the Viking Landing Sites». Science194 (4271): 1283-1288. Bibcode:1976Sci...194.1283C. PMID17797084. doi:10.1126/science.194.4271.1283.Se sugiere usar |número-autores= (ayuda)
Malin, Michael C.; Edgett, Kenneth S. (2001). «Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission». Journal of Geophysical Research106 (E10): 23429-23570. Bibcode:2001JGR...10623429M. doi:10.1029/2000JE001455.
Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). «Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions». Science278 (5344): 1743-1748. Bibcode:1997Sci...278.1743G. PMID9388167. doi:10.1126/science.278.5344.1743.
Murche, S.; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane (1993). «Spatial Variations in the Spectral Properties of Bright Regions on Mars». Icarus105 (2): 454-468. Bibcode:1993Icar..105..454M. doi:10.1006/icar.1993.1141.
Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. (2002). «Global Distribution of Neutrons from Mars: Results from Mars Odyssey». Science297 (5578): 75-78. Bibcode:2002Sci...297...75F. PMID12040088. doi:10.1126/science.1073541.
Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. (2002). «Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey». Science297 (5578): 78-81. Bibcode:2002Sci...297...78M. PMID12040089. doi:10.1126/science.1073616.
Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. (2002). «Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits». Science297 (5578): 81-85. Bibcode:2002Sci...297...81B. PMID12040090. doi:10.1126/science.1073722.
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). «An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development». Journal of Geophysical Research110: E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460.
Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D. et al. (2008). «Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science». J. Geophysical Research113: E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029/2008JE003083.
Mellon, M.; Jakosky, B. (1993). «Geographic variations in the thermal and diffusive stability of ground ice on Mars». J. Geographical Research98: 3345-3364. Bibcode:1993JGR....98.3345M. doi:10.1029/92JE02355.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Rennó, Nilton O.; Bos, Brent J.; Catling, David; Clark, Benton C.; Drube, Line; Fisher, David; Goetz, Walter; Hviid, Stubbe F.; Keller, Horst Uwe; Kok, Jasper F.; Kounaves, Samuel P.; Leer, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markiewicz, Wojciech J.; Marshall, John; McKay, Christopher; Mehta, Manish; Smith, Miles; Zorzano, M. P.; Smith, Peter H.; Stoker, Carol; Young, Suzanne M. M. (2009). «Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site». Journal of Geophysical Research114: E00E03. Bibcode:2009JGRE..114.0E03R. doi:10.1029/2009JE003362.
Morris, S. (2006). «Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills». J. Geophys. Res.111: n/a. Bibcode:2006JGRE..111.2S13M. doi:10.1029/2005je002584.
Ming, D.; Mittlefehldt, D. W.; Morris, R. V.; Golden, D. C.; Gellert, R.; Yen, A.; Clark, B. C.; Squyres, S. W.; Farrand, W. H.; Ruff, S. W.; Arvidson, R. E.; Klingelhöfer, G.; McSween, H. Y.; Rodionov, D. S.; Schröder, C.; De Souza, P. A.; Wang, A. (2006). «Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars». J. Geophys. Res.111: E02S12. Bibcode:2006JGRE..111.2S12M. doi:10.1029/2005JE002560.
Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten et al. (3 de junio de 2010). «Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover». Science329 (5990): 421-424. Bibcode:2010Sci...329..421M. PMID20522738. doi:10.1126/science.1189667.
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). «Spectral evidence for hydrated salts in recurring slope lineae on Mars». Nature Geoscience8 (11): 829-832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546.
Bibring, J.-P.; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; Omega Team, the; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V. et al. (2004). «Perennial Water Ice Identified in the South Polar Cap of Mars». Nature428 (6983): 627-630. Bibcode:2004Natur.428..627B. PMID15024393. doi:10.1038/nature02461.
Villanueva, G.; Mumma, M.; Novak, R.; Käufl, H.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A. et al. (2015). «Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs». Science348 (6231): 218-221. Bibcode:2015Sci...348..218V. PMID25745065. doi:10.1126/science.aaa3630.Se sugiere usar |número-autores= (ayuda)
Baker, V.R.; Strom, R.G.; Gulick, V.C.; Kargel, J.S.; Komatsu, G.; Kale, V.S. (1991). «Ancient oceans, ice sheets and the hydrological cycle on Mars». Nature352 (6348): 589-594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0.
Parker, T.J.; Saunders, R.S.; Schneeberger, D.M. (1989). «Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary». Icarus82: 111-145. Bibcode:1989Icar...82..111P. doi:10.1016/0019-1035(89)90027-4.
Dohm, J.M.; Baker, Victor R.; Boynton, William V.; Fairén, Alberto G.; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong J.; Komatsu, Goro; Mahaney, William C.; Schulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruiz, Javier; Wheelock, Shawn J. (2009). «GRS Evidence and the Possibility of Paleooceans on Mars». Planetary and Space Science57 (5–6): 664-684. Bibcode:2009P&SS...57..664D. doi:10.1016/j.pss.2008.10.008.
Clifford, S.M.; Parker, T.J. (2001). «The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains». Icarus154: 40-79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671.
Fassett, C. I.; Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R. (2010). «Supraglacial and Proglacial Valleys on Amazonian Mars». Icarus208 (1): 86-100. Bibcode:2010Icar..208...86F. doi:10.1016/j.icarus.2010.02.021.
Heisinger, H.; Head, J. (2002). «Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history». Planet. Space Sci.50 (10–11): 939-981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5.
Glotch, T.; Christensen, P. (2005). «Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history». J. Geophys. Res.110: E09006. Bibcode:2005JGRE..110.9006G. doi:10.1029/2004JE002389.
Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. (2005). «An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits». Journal of Geophysical Research110: E12S14. Bibcode:2005JGRE..11012S14H. doi:10.1029/2005JE002459.
Harrison, K; Grimm, R. (2005). «Groundwater-controlled valley networks and the decline of surface runoff on early Mars». Journal of Geophysical Research110: E12S16. Bibcode:2005JGRE..11012S16H. doi:10.1029/2005JE002455.
Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). «Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars». J. Geophys. Res. Planets121 (2): 194-232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891.
Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). «Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars». J. Geophys. Res. Planets121 (2): 194-232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891.
Fassett, C.; Head, III (2008). «Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology». Icarus198: 37-56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016.
Head, J. (2006). «Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation». Geophys. Res. Lett.33 (8): 33. Bibcode:2006GeoRL..33.8S03H. doi:10.1029/2005gl024360.
Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). «Martian sub-surface ionising radiation: biosignatures and geology». Biogeosciences4 (4): 545-558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Consultado el 1 de junio de 2013. «This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. [..] Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs.»
Spinrad, H.; Münch, G.; Kaplan, L. D. (1963). «Letter to the Editor: the Detection of Water Vapor on Mars». Astrophysical Journal137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613.
Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Tokar, R. L. (2004). «Global distribution of near-surface hydrogen on Mars». Journal of Geophysical Research109: E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. E09006.
Byrne, S.; Ingersoll, A. P. (2002). «A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features». American Astronomical Society (American Astronomical Society) 34: 837. Bibcode:2002DPS....34.0301B.
Shean, D. (2005). «Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit». Journal of Geophysical Research110 (E5): E05001. Bibcode:2005JGRE..11005001S. doi:10.1029/2004JE002360.
Basilevsky, A. (2006). «Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars». Geophysical Research Letters33. L13201. Bibcode:2006GeoRL..3313201B. doi:10.1029/2006GL026396.
Milliken, R. (2003). «Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images». Journal of Geophysical Research108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002je002005.
Head, J. W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; van Gasselt, S.; HRSC Co-Investigator Team (2005). «Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars». Nature434 (7031): 346-350. Bibcode:2005Natur.434..346H. PMID15772652. doi:10.1038/nature03359.
Shean, David E. (2005). «Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit». Journal of Geophysical Research110. Bibcode:2005JGRE..11005001S. doi:10.1029/2004JE002360.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'condiciones como las que se dan en Marte, fuera del régimen de temperature-presión estable del agua líquida' … 'El agua líquida es típicamente estable en las menores elevaciones y en las latitudes bajas del planeta, porque la presión atmosférica es mayor que la presión de vapor del agua, y las temperaturas de la superficie en las regiones equatoriales pueden alcanzar 220 K (-53 C) en períodos del día.
Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). «Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water». Icarus205: 113-137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
Musselwhite, Donald S.; Swindle, Timothy D.; Lunine, Jonathan I. (2001). «Liquid CO2 breakout and the formation of recent small gullies on Mars». Geophysical Research Letters28 (7): 1283-1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496.
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). «Spectral evidence for hydrated salts in recurring slope lineae on Mars». Nature Geoscience8 (11): 829-832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546.
Arvidson, R; Gooding, James L.; Moore, Henry J. (1989). «The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers». Review of Geophysics27: 39-60. Bibcode:1989RvGeo..27...39A. doi:10.1029/RG027i001p00039.
Clark, B.; Baird, AK; Rose Jr., HJ; Toulmin P, 3rd; Keil, K; Castro, AJ; Kelliher, WC; Rowe, CD et al. (1976). «Inorganic Analysis of Martian Samples at the Viking Landing Sites». Science194 (4271): 1283-1288. Bibcode:1976Sci...194.1283C. PMID17797084. doi:10.1126/science.194.4271.1283.Se sugiere usar |número-autores= (ayuda)
Malin, Michael C.; Edgett, Kenneth S. (2001). «Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission». Journal of Geophysical Research106 (E10): 23429-23570. Bibcode:2001JGR...10623429M. doi:10.1029/2000JE001455.
Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). «Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions». Science278 (5344): 1743-1748. Bibcode:1997Sci...278.1743G. PMID9388167. doi:10.1126/science.278.5344.1743.
Murche, S.; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane (1993). «Spatial Variations in the Spectral Properties of Bright Regions on Mars». Icarus105 (2): 454-468. Bibcode:1993Icar..105..454M. doi:10.1006/icar.1993.1141.
Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. (2002). «Global Distribution of Neutrons from Mars: Results from Mars Odyssey». Science297 (5578): 75-78. Bibcode:2002Sci...297...75F. PMID12040088. doi:10.1126/science.1073541.
Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. (2002). «Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey». Science297 (5578): 78-81. Bibcode:2002Sci...297...78M. PMID12040089. doi:10.1126/science.1073616.
Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. (2002). «Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits». Science297 (5578): 81-85. Bibcode:2002Sci...297...81B. PMID12040090. doi:10.1126/science.1073722.
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). «An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development». Journal of Geophysical Research110: E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460.
Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D. et al. (2008). «Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science». J. Geophysical Research113: E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029/2008JE003083.
Mellon, M.; Jakosky, B. (1993). «Geographic variations in the thermal and diffusive stability of ground ice on Mars». J. Geographical Research98: 3345-3364. Bibcode:1993JGR....98.3345M. doi:10.1029/92JE02355.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Rennó, Nilton O.; Bos, Brent J.; Catling, David; Clark, Benton C.; Drube, Line; Fisher, David; Goetz, Walter; Hviid, Stubbe F.; Keller, Horst Uwe; Kok, Jasper F.; Kounaves, Samuel P.; Leer, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markiewicz, Wojciech J.; Marshall, John; McKay, Christopher; Mehta, Manish; Smith, Miles; Zorzano, M. P.; Smith, Peter H.; Stoker, Carol; Young, Suzanne M. M. (2009). «Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site». Journal of Geophysical Research114: E00E03. Bibcode:2009JGRE..114.0E03R. doi:10.1029/2009JE003362.
Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P.; Gospodinova, K.; Kapit, J.; Smith, P. H. (2009). «Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site». Science325 (5936): 64-67. Bibcode:2009Sci...325...64H. PMID19574385. doi:10.1126/science.1172466 (inactivo 2017-01-15).
Smith, P. H.; Tamppari, L. K.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W. V.; Carswell, A.; Catling, D. C.; Clark, B. C.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, H. P.; Hecht, M. H.; Hipkin, V.; Hoffman, J.; Hviid, S. F.; Keller, H. U.; Kounaves, S. P.; Lange, C. F.; Lemmon, M. T.; Madsen, M. B.; Markiewicz, W. J.; Marshall, J.; McKay, C. P.; Mellon, M. T.; Ming, D. W.; Morris, R. V. et al. (2009). «H2O at the Phoenix Landing Site». Science325 (5936): 58-61. Bibcode:2009Sci...325...58S. PMID19574383. doi:10.1126/science.1172339 (inactivo 2017-01-15).
Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. (2009). «Mars Water-Ice Clouds and Precipitation». Science325 (5936): 68-70. Bibcode:2009Sci...325...68W. PMID19574386. doi:10.1126/science.1172344 (inactivo 2017-01-15).
Morris, S. (2006). «Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills». J. Geophys. Res.111: n/a. Bibcode:2006JGRE..111.2S13M. doi:10.1029/2005je002584.
Ming, D.; Mittlefehldt, D. W.; Morris, R. V.; Golden, D. C.; Gellert, R.; Yen, A.; Clark, B. C.; Squyres, S. W.; Farrand, W. H.; Ruff, S. W.; Arvidson, R. E.; Klingelhöfer, G.; McSween, H. Y.; Rodionov, D. S.; Schröder, C.; De Souza, P. A.; Wang, A. (2006). «Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars». J. Geophys. Res.111: E02S12. Bibcode:2006JGRE..111.2S12M. doi:10.1029/2005JE002560.
Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten et al. (3 de junio de 2010). «Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover». Science329 (5990): 421-424. Bibcode:2010Sci...329..421M. PMID20522738. doi:10.1126/science.1189667.
Steigerwald, Bill (15 de enero de 2009). «Martian Methane Reveals the Red Planet is not a Dead Planet». NASA's Goddard Space Flight Center (NASA). Archivado desde el original el 17 de enero de 2009. Consultado el 7 de agosto de 2018. «If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist».
Bibring, J.-P.; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; Omega Team, the; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V. et al. (2004). «Perennial Water Ice Identified in the South Polar Cap of Mars». Nature428 (6983): 627-630. Bibcode:2004Natur.428..627B. PMID15024393. doi:10.1038/nature02461.
Villanueva, G.; Mumma, M.; Novak, R.; Käufl, H.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A. et al. (2015). «Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs». Science348 (6231): 218-221. Bibcode:2015Sci...348..218V. PMID25745065. doi:10.1126/science.aaa3630.Se sugiere usar |número-autores= (ayuda)
Kliore, A. (1965). «Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere». Science149 (3689): 1243-1248. PMID17747455. doi:10.1126/science.149.3689.1243.
Plaut, J. J. (15 de marzo de 2007). «Subsurface Radar Sounding of the South Polar Layered Deposits of Mars». Science316 (5821): 92-95. PMID17363628. doi:10.1126/science.1139672.
Mustard, J. (2001). «Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice». Nature412 (6845): 411-4. PMID11473309. doi:10.1038/35086515.
Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). «Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions». Science278 (5344): 1743-1748. Bibcode:1997Sci...278.1743G. PMID9388167. doi:10.1126/science.278.5344.1743.
Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. (2002). «Global Distribution of Neutrons from Mars: Results from Mars Odyssey». Science297 (5578): 75-78. Bibcode:2002Sci...297...75F. PMID12040088. doi:10.1126/science.1073541.
Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. (2002). «Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey». Science297 (5578): 78-81. Bibcode:2002Sci...297...78M. PMID12040089. doi:10.1126/science.1073616.
Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. (2002). «Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits». Science297 (5578): 81-85. Bibcode:2002Sci...297...81B. PMID12040090. doi:10.1126/science.1073722.
Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P.; Gospodinova, K.; Kapit, J.; Smith, P. H. (2009). «Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site». Science325 (5936): 64-67. Bibcode:2009Sci...325...64H. PMID19574385. doi:10.1126/science.1172466 (inactivo 2017-01-15).
Smith, P. H.; Tamppari, L. K.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W. V.; Carswell, A.; Catling, D. C.; Clark, B. C.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, H. P.; Hecht, M. H.; Hipkin, V.; Hoffman, J.; Hviid, S. F.; Keller, H. U.; Kounaves, S. P.; Lange, C. F.; Lemmon, M. T.; Madsen, M. B.; Markiewicz, W. J.; Marshall, J.; McKay, C. P.; Mellon, M. T.; Ming, D. W.; Morris, R. V. et al. (2009). «H2O at the Phoenix Landing Site». Science325 (5936): 58-61. Bibcode:2009Sci...325...58S. PMID19574383. doi:10.1126/science.1172339 (inactivo 2017-01-15).
Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. (2009). «Mars Water-Ice Clouds and Precipitation». Science325 (5936): 68-70. Bibcode:2009Sci...325...68W. PMID19574386. doi:10.1126/science.1172344 (inactivo 2017-01-15).
Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten et al. (3 de junio de 2010). «Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover». Science329 (5990): 421-424. Bibcode:2010Sci...329..421M. PMID20522738. doi:10.1126/science.1189667.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'condiciones como las que se dan en Marte, fuera del régimen de temperature-presión estable del agua líquida' … 'El agua líquida es típicamente estable en las menores elevaciones y en las latitudes bajas del planeta, porque la presión atmosférica es mayor que la presión de vapor del agua, y las temperaturas de la superficie en las regiones equatoriales pueden alcanzar 220 K (-53 C) en períodos del día.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
de Morais, A. (2012). «A Possible Biochemical Model for Mars»(PDF). 43rd Lunar and Planetary Science Conference (2012). Consultado el 5 de junio de 2013. «The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth.»
Steigerwald, Bill (15 de enero de 2009). «Martian Methane Reveals the Red Planet is not a Dead Planet». NASA's Goddard Space Flight Center (NASA). Archivado desde el original el 17 de enero de 2009. Consultado el 7 de agosto de 2018. «If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist».
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'condiciones como las que se dan en Marte, fuera del régimen de temperature-presión estable del agua líquida' … 'El agua líquida es típicamente estable en las menores elevaciones y en las latitudes bajas del planeta, porque la presión atmosférica es mayor que la presión de vapor del agua, y las temperaturas de la superficie en las regiones equatoriales pueden alcanzar 220 K (-53 C) en períodos del día.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.
Heldmann, Jennifer L. (7 de mayo de 2005). «Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions»(PDF). Journal of Geophysical Research110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. Archivado desde el original el 1 de octubre de 2008. Consultado el 1 de mayo de 2017. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 Kelvin (−53,2 °C; −63,7 °F) for parts of the day.