Hoffmann, Matthias H. (2002). “Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae)”. Journal of Biogeography29: 125–134. doi:10.1046/j.1365-2699.2002.00647.x.
Mitchell-Olds, Thomas (December 2001). “Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution”. Trends in Ecology & Evolution16 (12): 693–700. doi:10.1016/s0169-5347(01)02291-1.
Sharbel, Timothy F.; Haubold, Bernhard; Mitchell-Olds, Thomas (2000). “Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe”. Molecular Ecology9 (12): 2109–2118. doi:10.1046/j.1365-294x.2000.01122.x. PMID11123622.
“Flower Visitors in a Natural Population of Arabidopsis thaliana”. Plant Biology5 (5): 491–494. (September 2003). doi:10.1055/s-2003-44784.
“Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana”. Molecular Plant-Microbe Interactions20 (2): 207–17. (February 2007). doi:10.1094/MPMI-20-2-0207. PMID17313171.
“Analysis of the genome sequence of the flowering plant Arabidopsis thaliana”. Nature408 (6814): 796–815. (December 2000). doi:10.1038/35048692. PMID11130711.
“Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana”. The Plant Journal16 (6): 735–43. (December 1998). doi:10.1046/j.1365-313x.1998.00343.x. PMID10069079.
“Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method”. Nature Protocols1 (2): 641–6. (2006). doi:10.1038/nprot.2006.97. PMID17406292.
“The mechanisms of UV mutagenesis” (英語). Journal of Radiation Research52 (2): 115-125. (March 2011). doi:10.1269/jrr.10175. PMID21436607.
Kaiser G, Kleiner O, Beisswenger C, Batschauer A. Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta. 2009 Aug;230(3):505-15. doi:10.1007/s00425-009-0962-y. Epub 2009 Jun 12. PMID19521716
Friedman, Jannice (2020-11-02). “The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms”. Annual Review of Ecology, Evolution, and Systematics (Annual Reviews (publisher)) 51 (1): 461–481. doi:10.1146/annurev-ecolsys-110218-024638. ISSN1543-592X.
Whittaker, Charles; Dean, Caroline (2017-10-06). “The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation”. Annual Review of Cell and Developmental Biology (Annual Reviews (publisher)) 33 (1): 555–575. doi:10.1146/annurev-cellbio-100616-060546. ISSN1081-0706. PMID28693387.
“From seed to seed: the role of photoreceptors in Arabidopsis development”. Developmental Biology260 (2): 289–97. (August 2003). doi:10.1016/S0012-1606(03)00212-4. PMID12921732.
“Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development”. The International Journal of Developmental Biology49 (5–6): 491–500. (2005). doi:10.1387/ijdb.041968pm. PMID16096959.
“FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis”. Molecular Cell5 (6): 1003–11. (June 2000). doi:10.1016/S1097-2765(00)80265-8. PMID10911994.
Urban, L.; Chabane Sari, D.; Orsal, B.; Lopes, M.; Miranda, R.; Aarrouf, J. (2018). “UV-C light and pulsed light as alternatives to chemical and biological elicitors for stimulating plant natural defenses against fungal diseases”. Scientia Horticulturae (Elsevier) 235: 452–459. doi:10.1016/j.scienta.2018.02.057. ISSN0304-4238.
“Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation”. Cell125 (4): 749–60. (May 2006). doi:10.1016/j.cell.2006.03.037. PMID16713565.
“Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance”. Nature Biotechnology28 (4): 365–9. (April 2010). doi:10.1038/nbt.1613. PMID20231819.
“Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat”. New Phytologist206 (2): 606-613. (April 2015). doi:10.1111/nph.13356. PMID25760815.
“Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance”. Cell112 (3): 379-89. (February 2003). doi:10.1016/s0092-8674(03)00040-0. PMID12581527.
“Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4”. Cell112 (3): 369–77. (February 2003). doi:10.1016/S0092-8674(03)00036-9. PMID12581526.
“Benzothiadizaole induces disease resistance by a citation of the systemic acquired resistance signal transduction pathway”. The Plant Journal10 (1): 71–82. (1996). doi:10.1046/j.1365-313x.1996.10010071.x. PMID8758979.
“Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh”. Heredity62 (3): 411–418. (1989). doi:10.1038/hdy.1989.56.
Keita, Suwabe; Kaori, Nagasaka; Endang, Ayu Windari; Chihiro, Hoshiai; Takuma, Ota; Maho, Takada; Ai, Kitazumi; Hiromi, Masuko-Suzuki et al. (2006). Double-locking mechanism of self-compatibility in Arabidopsis thaliana: the synergistic effect of transcriptional depression and disruption of coding region in the male specificity gene. 23. pp. 1217–31. doi:10.3389/fpls.2020.576140.. PMID33042191.
“Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana”. Molecular Plant-Microbe Interactions20 (2): 207–17. (February 2007). doi:10.1094/MPMI-20-2-0207. PMID17313171.
“Analysis of the genome sequence of the flowering plant Arabidopsis thaliana”. Nature408 (6814): 796–815. (December 2000). doi:10.1038/35048692. PMID11130711.
“Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana”. The Plant Journal16 (6): 735–43. (December 1998). doi:10.1046/j.1365-313x.1998.00343.x. PMID10069079.
“Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method”. Nature Protocols1 (2): 641–6. (2006). doi:10.1038/nprot.2006.97. PMID17406292.
“The mechanisms of UV mutagenesis” (英語). Journal of Radiation Research52 (2): 115-125. (March 2011). doi:10.1269/jrr.10175. PMID21436607.
Kaiser G, Kleiner O, Beisswenger C, Batschauer A. Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta. 2009 Aug;230(3):505-15. doi:10.1007/s00425-009-0962-y. Epub 2009 Jun 12. PMID19521716
Whittaker, Charles; Dean, Caroline (2017-10-06). “The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation”. Annual Review of Cell and Developmental Biology (Annual Reviews (publisher)) 33 (1): 555–575. doi:10.1146/annurev-cellbio-100616-060546. ISSN1081-0706. PMID28693387.
“From seed to seed: the role of photoreceptors in Arabidopsis development”. Developmental Biology260 (2): 289–97. (August 2003). doi:10.1016/S0012-1606(03)00212-4. PMID12921732.
“Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development”. The International Journal of Developmental Biology49 (5–6): 491–500. (2005). doi:10.1387/ijdb.041968pm. PMID16096959.
“FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis”. Molecular Cell5 (6): 1003–11. (June 2000). doi:10.1016/S1097-2765(00)80265-8. PMID10911994.
Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007). “A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence”. Nature448: 479-500. PMID17625569.
Christopher Dardick, Pamela Ronald (2006). “Plant and animal pathogen recognition receptors signal through non-RD kinases”. PLoS Pathogens. PMID16424920.
“Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation”. Cell125 (4): 749–60. (May 2006). doi:10.1016/j.cell.2006.03.037. PMID16713565.
“Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance”. Nature Biotechnology28 (4): 365–9. (April 2010). doi:10.1038/nbt.1613. PMID20231819.
“Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat”. New Phytologist206 (2): 606-613. (April 2015). doi:10.1111/nph.13356. PMID25760815.
“Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance”. Cell112 (3): 379-89. (February 2003). doi:10.1016/s0092-8674(03)00040-0. PMID12581527.
“Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4”. Cell112 (3): 369–77. (February 2003). doi:10.1016/S0092-8674(03)00036-9. PMID12581526.
“Benzothiadizaole induces disease resistance by a citation of the systemic acquired resistance signal transduction pathway”. The Plant Journal10 (1): 71–82. (1996). doi:10.1046/j.1365-313x.1996.10010071.x. PMID8758979.
Keita, Suwabe; Kaori, Nagasaka; Endang, Ayu Windari; Chihiro, Hoshiai; Takuma, Ota; Maho, Takada; Ai, Kitazumi; Hiromi, Masuko-Suzuki et al. (2006). Double-locking mechanism of self-compatibility in Arabidopsis thaliana: the synergistic effect of transcriptional depression and disruption of coding region in the male specificity gene. 23. pp. 1217–31. doi:10.3389/fpls.2020.576140.. PMID33042191.
Friedman, Jannice (2020-11-02). “The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms”. Annual Review of Ecology, Evolution, and Systematics (Annual Reviews (publisher)) 51 (1): 461–481. doi:10.1146/annurev-ecolsys-110218-024638. ISSN1543-592X.
Whittaker, Charles; Dean, Caroline (2017-10-06). “The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation”. Annual Review of Cell and Developmental Biology (Annual Reviews (publisher)) 33 (1): 555–575. doi:10.1146/annurev-cellbio-100616-060546. ISSN1081-0706. PMID28693387.
Urban, L.; Chabane Sari, D.; Orsal, B.; Lopes, M.; Miranda, R.; Aarrouf, J. (2018). “UV-C light and pulsed light as alternatives to chemical and biological elicitors for stimulating plant natural defenses against fungal diseases”. Scientia Horticulturae (Elsevier) 235: 452–459. doi:10.1016/j.scienta.2018.02.057. ISSN0304-4238.