マクネマー検定 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "マクネマー検定" in Japanese language version.

refsWebsite
Global rank Japanese rank
4th place
24th place
2nd place
6th place
26th place
275th place
5th place
19th place
222nd place
498th place
6th place
146th place
low place
low place
low place
low place
low place
low place
low place
low place

archive.org

doi.org

  • McNemar, Quinn (June 18, 1947). “Note on the sampling error of the difference between correlated proportions or percentages”. Psychometrika 12 (2): 153–157. doi:10.1007/BF02295996. PMID 20254758. 
  • Hawass, N E (April 1997). “Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients.”. The British Journal of Radiology 70 (832): 360–366. doi:10.1259/bjr.70.832.9166071. ISSN 0007-1285. PMID 9166071. 
  • Edwards, A (1948). “Note on the "correction for continuity" in testing the significance of the difference between correlated proportions”. Psychometrika 13 (3): 185–187. doi:10.1007/bf02289261. PMID 18885738. 
  • Lancaster, H.O. (1961). “Significance tests in discrete distributions.”. J Am Stat Assoc 56 (294): 223–234. doi:10.1080/01621459.1961.10482105. 
  • Fagerland, M.W.; Lydersen, S.; Laake, P. (2013). “The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional”. BMC Medical Research Methodology 13: 91. doi:10.1186/1471-2288-13-91. PMC 3716987. PMID 23848987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716987/. 
  • Yang, Z.; Sun, X.; Hardin, J.W. (2010). “A note on the tests for clustered matched-pair binary data”. Biometrical Journal 52 (5): 638–652. doi:10.1002/bimj.201000035. PMID 20976694. 
  • Durkalski, V.L.; Palesch, Y.Y.; Lipsitz, S.R.; Rust, P.F. (2003). “Analysis of clustered matched-pair data”. Statistics in Medicine 22 (15): 2417–28. doi:10.1002/sim.1438. PMID 12872299. http://www3.interscience.wiley.com/journal/104545274/abstract April 1, 2009閲覧。. 
  • Stuart, Alan (1955). “A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification”. Biometrika 42 (3/4): 412–416. doi:10.1093/biomet/42.3-4.412. JSTOR 2333387. 
  • Maxwell, A.E. (1970). “Comparing the Classification of Subjects by Two Independent Judges”. The British Journal of Psychiatry 116 (535): 651–655. doi:10.1192/bjp.116.535.651. PMID 5452368. 
  • Bhapkar, V.P. (1966). “A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data”. Journal of the American Statistical Association 61 (313): 228–235. doi:10.1080/01621459.1966.10502021. JSTOR 2283057. 
  • Yang, Z.; Sun, X.; Hardin, J.W. (2012). “Testing Marginal Homogeneity in Matched-Pair Polytomous Data”. Therapeutic Innovation & Regulatory Science 46 (4): 434–438. doi:10.1177/0092861512442021. 

iut.ac.ir

mathdept.iut.ac.ir

john-uebersax.com

jstor.org

  • Liddell, D. (1976). “Practical Tests of 2 × 2 Contingency Tables”. Journal of the Royal Statistical Society 25 (4): 295–304. JSTOR 2988087. 
  • Stuart, Alan (1955). “A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification”. Biometrika 42 (3/4): 412–416. doi:10.1093/biomet/42.3-4.412. JSTOR 2333387. 
  • Bhapkar, V.P. (1966). “A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data”. Journal of the American Statistical Association 61 (313): 228–235. doi:10.1080/01621459.1966.10502021. JSTOR 2283057. 

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

pmc.ncbi.nlm.nih.gov

rimarcik.com

sas.com

www2.sas.com

wiley.com

www3.interscience.wiley.com

worldcat.org

search.worldcat.org

  • Hawass, N E (April 1997). “Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients.”. The British Journal of Radiology 70 (832): 360–366. doi:10.1259/bjr.70.832.9166071. ISSN 0007-1285. PMID 9166071.