포도당 수송체 (Korean Wikipedia)

Analysis of information sources in references of the Wikipedia article "포도당 수송체" in Korean language version.

refsWebsite
Global rank Korean rank
2nd place
3rd place
4th place
4th place
11th place
310th place
5,673rd place
5,130th place

doi.org

dx.doi.org

  • Maier A, Völker B, Boles E, Fuhrmann GF (December 2002). “Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters”. 《FEMS Yeast Research》 2 (4): 539–50. doi:10.1111/j.1567-1364.2002.tb00121.x. PMID 12702270. 
  • Boles E, Hollenberg CP (August 1997). “The molecular genetics of hexose transport in yeasts”. 《FEMS Microbiology Reviews》 21 (1): 85–111. doi:10.1111/j.1574-6976.1997.tb00346.x. PMID 9299703. 
  • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (December 2001). “Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae”. 《Yeast》 18 (16): 1515–24. doi:10.1002/yea.779. PMID 11748728. S2CID 22968336. 
  • Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Katagiri H, Akanuma Y, Takaku F (June 1990). “C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity”. 《Nature》 345 (6275): 550–3. doi:10.1038/345550a0. PMID 2348864. S2CID 4264399. 
  • Hebert DN, Carruthers A (November 1992). “Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1”. 《The Journal of Biological Chemistry》 267 (33): 23829–38. doi:10.1016/S0021-9258(18)35912-X. PMID 1429721. 
  • Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A (November 1995). “Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes”. 《Biochemistry》 34 (47): 15395–406. doi:10.1021/bi00047a002. PMID 7492539. 
  • Hruz PW, Mueckler MM (2001). “Structural analysis of the GLUT1 facilitative glucose transporter (review)”. 《Molecular Membrane Biology》 18 (3): 183–93. doi:10.1080/09687680110072140. PMID 11681785. 
  • Seatter MJ, De la Rue SA, Porter LM, Gould GW (February 1998). “QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site”. 《Biochemistry》 37 (5): 1322–6. doi:10.1021/bi972322u. PMID 9477959. 
  • Hruz PW, Mueckler MM (December 1999). “Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter”. 《The Journal of Biological Chemistry》 274 (51): 36176–80. doi:10.1074/jbc.274.51.36176. PMID 10593902. 
  • Thorens B (April 1996). “Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes”. 《The American Journal of Physiology》 270 (4 Pt 1): G541–53. doi:10.1152/ajpgi.1996.270.4.G541. PMID 8928783. 
  • Thorens B, Mueckler M (February 2010). “Glucose transporters in the 21st Century”. 《American Journal of Physiology. Endocrinology and Metabolism》 298 (2): E141–5. doi:10.1152/ajpendo.00712.2009. PMC 2822486. PMID 20009031. 
  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (March 1990). “Molecular biology of mammalian glucose transporters”. 《Diabetes Care》 13 (3): 198–208. doi:10.2337/diacare.13.3.198. PMID 2407475. S2CID 20712863. 
  • Wright EM, Turk E (February 2004). “The sodium/glucose cotransport family SLC5”. 《Pflügers Archiv》 447 (5): 510–8. doi:10.1007/s00424-003-1063-6. PMID 12748858. S2CID 41985805. 
  • Boyd CA (March 2008). “Facts, fantasies and fun in epithelial physiology”. 《Experimental Physiology》 93 (3): 303–14. doi:10.1113/expphysiol.2007.037523. PMID 18192340. S2CID 41086034. The insight from this time that remains in all current text books is the notion of Robert K. Crane published originally as an appendix to a symposium paper published in 1960 (Robert K. Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter. 

nih.gov

ncbi.nlm.nih.gov

  • Maier A, Völker B, Boles E, Fuhrmann GF (December 2002). “Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters”. 《FEMS Yeast Research》 2 (4): 539–50. doi:10.1111/j.1567-1364.2002.tb00121.x. PMID 12702270. 
  • Boles E, Hollenberg CP (August 1997). “The molecular genetics of hexose transport in yeasts”. 《FEMS Microbiology Reviews》 21 (1): 85–111. doi:10.1111/j.1574-6976.1997.tb00346.x. PMID 9299703. 
  • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (December 2001). “Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae”. 《Yeast》 18 (16): 1515–24. doi:10.1002/yea.779. PMID 11748728. S2CID 22968336. 
  • Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Katagiri H, Akanuma Y, Takaku F (June 1990). “C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity”. 《Nature》 345 (6275): 550–3. doi:10.1038/345550a0. PMID 2348864. S2CID 4264399. 
  • Hebert DN, Carruthers A (November 1992). “Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1”. 《The Journal of Biological Chemistry》 267 (33): 23829–38. doi:10.1016/S0021-9258(18)35912-X. PMID 1429721. 
  • Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A (November 1995). “Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes”. 《Biochemistry》 34 (47): 15395–406. doi:10.1021/bi00047a002. PMID 7492539. 
  • Hruz PW, Mueckler MM (2001). “Structural analysis of the GLUT1 facilitative glucose transporter (review)”. 《Molecular Membrane Biology》 18 (3): 183–93. doi:10.1080/09687680110072140. PMID 11681785. 
  • Seatter MJ, De la Rue SA, Porter LM, Gould GW (February 1998). “QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site”. 《Biochemistry》 37 (5): 1322–6. doi:10.1021/bi972322u. PMID 9477959. 
  • Hruz PW, Mueckler MM (December 1999). “Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter”. 《The Journal of Biological Chemistry》 274 (51): 36176–80. doi:10.1074/jbc.274.51.36176. PMID 10593902. 
  • Thorens B (April 1996). “Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes”. 《The American Journal of Physiology》 270 (4 Pt 1): G541–53. doi:10.1152/ajpgi.1996.270.4.G541. PMID 8928783. 
  • Thorens B, Mueckler M (February 2010). “Glucose transporters in the 21st Century”. 《American Journal of Physiology. Endocrinology and Metabolism》 298 (2): E141–5. doi:10.1152/ajpendo.00712.2009. PMC 2822486. PMID 20009031. 
  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (March 1990). “Molecular biology of mammalian glucose transporters”. 《Diabetes Care》 13 (3): 198–208. doi:10.2337/diacare.13.3.198. PMID 2407475. S2CID 20712863. 
  • Wright EM, Turk E (February 2004). “The sodium/glucose cotransport family SLC5”. 《Pflügers Archiv》 447 (5): 510–8. doi:10.1007/s00424-003-1063-6. PMID 12748858. S2CID 41985805. 
  • Boyd CA (March 2008). “Facts, fantasies and fun in epithelial physiology”. 《Experimental Physiology》 93 (3): 303–14. doi:10.1113/expphysiol.2007.037523. PMID 18192340. S2CID 41086034. The insight from this time that remains in all current text books is the notion of Robert K. Crane published originally as an appendix to a symposium paper published in 1960 (Robert K. Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter. 

semanticscholar.org

api.semanticscholar.org

  • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (December 2001). “Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae”. 《Yeast》 18 (16): 1515–24. doi:10.1002/yea.779. PMID 11748728. S2CID 22968336. 
  • Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Katagiri H, Akanuma Y, Takaku F (June 1990). “C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity”. 《Nature》 345 (6275): 550–3. doi:10.1038/345550a0. PMID 2348864. S2CID 4264399. 
  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (March 1990). “Molecular biology of mammalian glucose transporters”. 《Diabetes Care》 13 (3): 198–208. doi:10.2337/diacare.13.3.198. PMID 2407475. S2CID 20712863. 
  • Wright EM, Turk E (February 2004). “The sodium/glucose cotransport family SLC5”. 《Pflügers Archiv》 447 (5): 510–8. doi:10.1007/s00424-003-1063-6. PMID 12748858. S2CID 41985805. 
  • Boyd CA (March 2008). “Facts, fantasies and fun in epithelial physiology”. 《Experimental Physiology》 93 (3): 303–14. doi:10.1113/expphysiol.2007.037523. PMID 18192340. S2CID 41086034. The insight from this time that remains in all current text books is the notion of Robert K. Crane published originally as an appendix to a symposium paper published in 1960 (Robert K. Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter. 

uniprot.org