Esther Villar-Rodriguez. Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis. „Energy”. 137, s. 118–128, 2017. DOI: 10.1016/j.energy.2017.07.008.
Tuomas Pelkonen. Gorilla. „Proceedings of the VLDB Endowment”. 8 (12), s. 1816–1827, 2015. DOI: 10.14778/2824032.2824078.
Matt Asay: Why time series databases are exploding in popularity. TechRepublic, June 26, 2019. [dostęp 2019-07-31]. [zarchiwizowane z tego adresu (2019-08-26)]. Cytat: Relational databases and NoSQL databases can be used for time series data, but arguably developers will get better performance from purpose-built time series databases, rather than trying to apply a one-size-fits-all database to specific workloads.
Matt Asay: Why time series databases are exploding in popularity. TechRepublic, June 26, 2019. [dostęp 2019-07-31]. [zarchiwizowane z tego adresu (2019-08-26)]. Cytat: Relational databases and NoSQL databases can be used for time series data, but arguably developers will get better performance from purpose-built time series databases, rather than trying to apply a one-size-fits-all database to specific workloads.