Naprawa DNA (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Naprawa DNA" in Polish language version.

refsWebsite
Global rank Polish rank
4th place
7th place
1,389th place
2,042nd place
234th place
204th place
low place
low place
low place
low place
222nd place
228th place

actabp.pl

fasebj.org

nature.com

nih.gov

ncbi.nlm.nih.gov

  • Browner WS, Kahn AJ, Ziv E, Reiner AP, Oshima J, Cawthon RM, Hsueh WC, Cummings SR. The genetics of human longevity. „Am J Med”. 117. 11, s. 851–860, 2004. PMID: 15589490. 
  • Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. „Cell”. 27. 2, s. 223–233, 2007. PMID: 17662938. 
  • Hayflick, L, Moorhead, PS. The serial cultivation of human diploid cell strains. „Exp Cell Res”. 25, s. 585–621, 1961. PMID: 13905658. 
  • Hayflick, L. The limited in vitro lifetime of human diploid cell strains. „Exp Cell Res”. 37, s. 614–636, 1965. PMID: 14315085. 
  • Jennings BJ, Ozanne SE, Hales CN. Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging?. „Mol Genet Metab.”. 71. 1–2, s. 32–42, 2000. PMID: 11001793. 
  • Lou Z, Chen J. Cellular senescence and DNA repair. „Exp Cell Res”. 312. 14, s. 2641–2646, 2000. PMID: 16893723. 
  • Lynch, MD. How does cellular senescence prevent cancer?. „DNA Cell Biol”. 25. 2, s. 69–78, 2006. PMID: 16460230. 
  • Sancar, A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. „Chem Rev”. 103. 6, s. 2203–2237, 2003. PMID: 12797829. 
  • Volkert, MR. Adaptive response of Escherichia coli to alkylation damage. „Environ Mol Mutagen”. 11. 2, s. 241–255, 1988. PMID: 3278898. 
  • Wilson, TE, Grawunder, U, Lieber, MR. Yeast DNA ligase IV mediates non-homologous DNA end joining. „Nature”. 388, s. 495–498, 1997. PMID: 9242411. 
  • Moore, JK, Haber, JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. „Mol Cell Biol”. 16. 5, s. 2164–2173, 1996. PMID: 8628283. 
  • Boulton, SJ, Jackson, SP. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. „EMBO J”. 15. 18, s. 5093–5103, 1996. PMID: 8890183. 
  • Wilson, TE, Lieber, MR. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. „J Biol Chem”. 274, s. 23599–23609, 1999. PMID: 10438542. 
  • Budman, J, Chu, G. Processing of DNA for nonhomologous end-joining by cell-free extract. „EMBO J”. 24. 4, s. 849–860, 2005. PMID: 15692565. 
  • Wang, H, Perrault, AR, Takeda, Y, Qin, W, Wang, H, Iliakis, G. Biochemical evidence for Ku-independent backup pathways of NHEJ. „Nucleic Acids Res”. 31. 18, s. 5377–5388, 2003. PMID: 12954774. 
  • Jung, D, Alt, FW. Unraveling V(D)J recombination; insights into gene regulation. „Cell”. 116. 2, s. 299–311, 2004. PMID: 14744439. 
  • Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M. Reassembly of shattered chromosomes in Deinococcus radiodurans. „Nature”. 443. 7111, s. 569–573, 2006. PMID: 17006450. 
  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. „Nature”. 421. 6922, s. 499–506, 2003. PMID: 12556884. 
  • Fry, RC, Begley, TJ, Samson, LD. Genome-wide responses to DNA-damaging agents. „Annu Rev Microbiol”. 59, s. 357–377, 2004. PMID: 16153173. 
  • Janion, C. Some aspects of the SOS response system-a critical survey. „Acta Biochim Pol”. 48. 3, s. 599–610, 2001. PMID: 11833768. 
  • Schlacher, K, Pham, P, Cox, MM, Goodman, MF. Roles of DNA Polymerase V and RecA Protein in SOS Damage-Induced Mutation. „Chem Rev”. 106. 2, s. 406–419, 2006. PMID: 16464012. 
  • de Boer, J, Andressoo, JO, de Wit, J, Huijmans, J, Beems, RB, van Steeg, H, Weeda, G, van der Horst, GT, van Leeuwen, W, Themmen, AP, Meradji, M, Hoeijmakers, JH. Premature aging in mice deficient in DNA repair and transcription. „Science”. 296. 5571, s. 1276–1279, 2002. PMID: 11950998. 
  • Dolle, ME, Busuttil, RA, Garcia, AM, Wijnhoven, S, van Drunen, E, Niedernhofer, LJ, van der Horst, G, Hoeijmakers, JH, van Steeg, H, Vijg, J. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. „Mutat Res”. 596. 1–2, s. 22–35, 2006. PMID: 16472827. 
  • Edwards AA, Cox R. Commentary on the Second Event Theory of Busby. „Int J Radiat Biol”. 76. 1, s. 119–122, 2000. PMID: 10665965. 
  • Busby C. Commentary on the Second Event Theory of Busby by A.A. Edwards and R. Cox. „Int J Radiat Biol”. 76. 1, s. 123–125, 2000. PMID: 10665966. 
  • Kendall GM. Second-event theory reviewed. „J Radiol Prot”. 20. 1, s. 79–80, 2000. PMID: 10750958. 
  • Kobayashi Y, Narumi I, Satoh K, Funayama T, Kikuchi M, Kitayama S, Watanabe H. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. „Biol Sci Space”. 18. 3, s. 134–135, 2004. PMID: 15858357. 
  • Spindler SR. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. „Mech Ageing Dev”. 126. 9, s. 960–966, 2005. PMID: 15927235. 
  • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. „Nature”. 410. 6825, s. 227–230, 2001. PMID: 11242085. 
  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. „Science”. 305. 5682, s. 390–392, 2004. PMID: 15205477. 
  • Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. „DNA Repair (Amsterdam)”. 2. 3, s. 295–307, 2003. PMID: 12547392. 
  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. „FASEB J”. 18. 3, s. 595–597, 2004. PMID: 14734635. 
  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ. Evolution of lifespan in C. elegans. „Nature”. 405. 6784, s. 296–297, 2000. PMID: 10830948. 
  • Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. „Mol Cell”. 8. 6, s. 1163–1174, 2001. PMID: 11779493. 
  • Maresca, B, Schwartz, JH. Sudden origins: a general mechanism of evolution based on stress protein concentration and rapid environmental change. „Anat Rec B New Anat”. 289. 1, s. 38–46, 2006. PMID: 16437551. 

oxfordjournals.org

nar.oxfordjournals.org

wiley.com

www3.interscience.wiley.com