MichaelM.HäveckerMichaelM. i inni, Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid, „Journal of Catalysis”, 285 (1), 2012, s. 48–60, DOI: 10.1016/j.jcat.2011.09.012 [dostęp 2024-07-06](ang.).
KazuhikoK.AmakawaKazuhikoK. i inni, Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol, „ACS Catalysis”, 3 (6), 2013, s. 1103–1113, DOI: 10.1021/cs400010q [dostęp 2024-07-06](ang.).
SamiraS.SlyemiSamiraS. i inni, Comparative study of physico-chemical, acid–base and catalytic properties of vanadium based catalysts in the oxidehydrogenation of n-butane: effect of the oxide carrier, „Reaction Kinetics, Mechanisms and Catalysis”, 128 (2), 2019, s. 831–845, DOI: 10.1007/s11144-019-01653-2 [dostęp 2024-07-06](ang.).
N.D.N.D.ShcherbanN.D.N.D., E.A.E.A.DiyukE.A.E.A., V.V.V.V.SydorchukV.V.V.V., Synthesis and catalytic activity of vanadium phosphorous oxides systems supported on silicon carbide for the selective oxidation of n-butane to maleic anhydride, „Reaction Kinetics, Mechanisms and Catalysis”, 126 (2), 2019, s. 975–985, DOI: 10.1007/s11144-018-01530-4 [dostęp 2024-07-06](ang.).
JiaqiJ.LiuJiaqiJ. i inni, Enhanced hydrothermal stability of a manganese metavanadate catalyst based on WO3–TiO2 for the selective catalytic reduction of NOx with NH3, „Reaction Kinetics, Mechanisms and Catalysis”, 128 (1), 2019, s. 175–191, DOI: 10.1007/s11144-019-01624-7 [dostęp 2024-07-06](ang.).
Samuel C.S.C.PerrySamuel C.S.C. i inni, Electrochemical synthesis of hydrogen peroxide from water and oxygen, „Nature Reviews Chemistry”, 3 (7), 2019, s. 442–458, DOI: 10.1038/s41570-019-0110-6 [dostęp 2024-07-06](ang.).