Celen, A. B., & Sahin, U. (2020). Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. The FEBS journal, 287(15), 3110-3140. PMID32255256doi:10.1111/febs.15319
Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., ... & Liang, S. (2017). Protein SUMOylation modification and its associations with disease. Open biology, 7(10), 170167. PMID29021212PMC5666083doi:10.1098/rsob.170167
Yau, T. Y., Molina, O., & Courey, A. J. (2020). SUMOylation in development and neurodegeneration. Development, 147(6), dev175703. PMID32188601PMC7097199doi:10.1242/dev.175703
Niskanen, E. A., Malinen, M., Sutinen, P., Toropainen, S., Paakinaho, V., Vihervaara, A., ... & Palvimo, J. J. (2015). Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome biology, 16(1), 1-19. PMID26259101PMC4531811doi:10.1186/s13059-015-0717-y
Boulanger, M., Chakraborty, M., Tempé, D., Piechaczyk, M., & Bossis, G. (2021). SUMO and transcriptional regulation: The lessons of large-scale proteomic, modifomic and genomic studies. Molecules, 26(4), 828. PMID33562565PMC7915335doi:10.3390/molecules26040828
Li, T., Santockyte, R., Shen, R. F., Tekle, E., Wang, G., Yang, D. C., & Chock, P. B. (2006). Expression of SUMO-2/3 induced senescence through p53-and pRB-mediated pathways. Journal of Biological Chemistry, 281(47), 36221-36227. PMID17012228doi:10.1074/jbc.M608236200
Jin, L. Z., Lu, J. S., & Gao, J. W. (2018). Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Bioscience reports, 38(3). BSR20171523 PMID29700214PMC6023941doi:10.1042/BSR20171523
Kho, C., Lee, A., Jeong, D., Oh, J. G., Gorski, P. A., Fish, K., ... & Hajjar, R. J. (2015). Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nature communications, 6(1), 1-11. PMID26068603PMC4467461doi:10.1038/ncomms8229
Du, C., Chen, X., Su, Q., Lu, W., Wang, Q., Yuan, H., ... & Qi, Y. (2021). The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. International Journal of Molecular Sciences, 22(19), 10618. PMID34638970PMC8509021doi:10.3390/ijms221910618
Lightcap, E. S., Yu, P., Grossman, S., Song, K., Khattar, M., Xega, K., ... & Huszar, D. (2021). A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Science Translational Medicine, 13(611), eaba7791. PMID34524860doi:10.1126/scitranslmed.aba7791
Kumar, S., Schoonderwoerd, M. J., Kroonen, J. S., de Graaf, I. J., Sluijter, M., Ruano, D., ... & Vertegaal, A. C. (2022). Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut. PMID35074907doi:10.1136/gutjnl-2021-324834
Kukkula, A., Ojala, V. K., Mendez, L. M., Sistonen, L., Elenius, K., & Sundvall, M. (2021). Therapeutic potential of targeting the SUMO pathway in cancer. Cancers, 13(17), 4402. PMID34503213PMC8431684doi:10.3390/cancers13174402
Hua, D., & Wu, X. (2022). Small-molecule inhibitors targeting small ubiquitin-like modifier pathway for the treatment of cancers and other diseases. European Journal of Medicinal Chemistry, 233, 114227. PMID35247754doi:10.1016/j.ejmech.2022.114227
Celen, A. B., & Sahin, U. (2020). Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. The FEBS journal, 287(15), 3110-3140. PMID32255256doi:10.1111/febs.15319
Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., ... & Liang, S. (2017). Protein SUMOylation modification and its associations with disease. Open biology, 7(10), 170167. PMID29021212PMC5666083doi:10.1098/rsob.170167
Yau, T. Y., Molina, O., & Courey, A. J. (2020). SUMOylation in development and neurodegeneration. Development, 147(6), dev175703. PMID32188601PMC7097199doi:10.1242/dev.175703
Niskanen, E. A., Malinen, M., Sutinen, P., Toropainen, S., Paakinaho, V., Vihervaara, A., ... & Palvimo, J. J. (2015). Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome biology, 16(1), 1-19. PMID26259101PMC4531811doi:10.1186/s13059-015-0717-y
Boulanger, M., Chakraborty, M., Tempé, D., Piechaczyk, M., & Bossis, G. (2021). SUMO and transcriptional regulation: The lessons of large-scale proteomic, modifomic and genomic studies. Molecules, 26(4), 828. PMID33562565PMC7915335doi:10.3390/molecules26040828
Li, T., Santockyte, R., Shen, R. F., Tekle, E., Wang, G., Yang, D. C., & Chock, P. B. (2006). Expression of SUMO-2/3 induced senescence through p53-and pRB-mediated pathways. Journal of Biological Chemistry, 281(47), 36221-36227. PMID17012228doi:10.1074/jbc.M608236200
Jin, L. Z., Lu, J. S., & Gao, J. W. (2018). Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Bioscience reports, 38(3). BSR20171523 PMID29700214PMC6023941doi:10.1042/BSR20171523
Kho, C., Lee, A., Jeong, D., Oh, J. G., Gorski, P. A., Fish, K., ... & Hajjar, R. J. (2015). Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nature communications, 6(1), 1-11. PMID26068603PMC4467461doi:10.1038/ncomms8229
Du, C., Chen, X., Su, Q., Lu, W., Wang, Q., Yuan, H., ... & Qi, Y. (2021). The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. International Journal of Molecular Sciences, 22(19), 10618. PMID34638970PMC8509021doi:10.3390/ijms221910618
Lightcap, E. S., Yu, P., Grossman, S., Song, K., Khattar, M., Xega, K., ... & Huszar, D. (2021). A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Science Translational Medicine, 13(611), eaba7791. PMID34524860doi:10.1126/scitranslmed.aba7791
Kumar, S., Schoonderwoerd, M. J., Kroonen, J. S., de Graaf, I. J., Sluijter, M., Ruano, D., ... & Vertegaal, A. C. (2022). Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut. PMID35074907doi:10.1136/gutjnl-2021-324834
Kukkula, A., Ojala, V. K., Mendez, L. M., Sistonen, L., Elenius, K., & Sundvall, M. (2021). Therapeutic potential of targeting the SUMO pathway in cancer. Cancers, 13(17), 4402. PMID34503213PMC8431684doi:10.3390/cancers13174402
Hua, D., & Wu, X. (2022). Small-molecule inhibitors targeting small ubiquitin-like modifier pathway for the treatment of cancers and other diseases. European Journal of Medicinal Chemistry, 233, 114227. PMID35247754doi:10.1016/j.ejmech.2022.114227