Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., … & Martins, N. (2019). The therapeutic potential of apigenin. International journal of molecular sciences, 20(6), 1305. PMID30875872PMC6472148doi:10.3390/ijms20061305
Alam, W., Rocca, C., Khan, H., Hussain, Y., Aschner, M., De Bartolo, A., … & Cheang, W. S. (2021). Current status and future perspectives on therapeutic potential of apigenin: Focus on metabolic-syndrome-dependent organ dysfunction. Antioxidants, 10(10), 1643. PMID34679777PMC8533599doi:10.3390/antiox10101643
Zeidler, J. D., Hogan, K. A., Agorrody, G., Peclat, T. R., Kashyap, S., Kanamori, K. S., … & Chini, E. N. (2022). The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. American Journal of Physiology-Cell Physiology, 322(3), C521-C545. PMID35138178PMC8917930 (available on 2023-03-01) doi:10.1152/ajpcell.00451.2021
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID23172919PMC3609577doi:10.2337/db12-1139
Clayton, Z. S., Hutton, D. A., Brunt, V. E., VanDongen, N. S., Ziemba, B. P., Casso, A. G., … & Seals, D. R. (2021). Apigenin restores endothelial function by ameliorating oxidative stress, reverses aortic stiffening, and mitigates vascular inflammation with aging. American Journal of Physiology-Heart and Circulatory Physiology, 321(1), H185-H196. PMID34114892PMC8321807 (available on 2022-07-01) doi:10.1152/ajpheart.00118.2021
Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., … & Martins, N. (2019). The therapeutic potential of apigenin. International journal of molecular sciences, 20(6), 1305. PMID30875872PMC6472148doi:10.3390/ijms20061305
Alam, W., Rocca, C., Khan, H., Hussain, Y., Aschner, M., De Bartolo, A., … & Cheang, W. S. (2021). Current status and future perspectives on therapeutic potential of apigenin: Focus on metabolic-syndrome-dependent organ dysfunction. Antioxidants, 10(10), 1643. PMID34679777PMC8533599doi:10.3390/antiox10101643
Zeidler, J. D., Hogan, K. A., Agorrody, G., Peclat, T. R., Kashyap, S., Kanamori, K. S., … & Chini, E. N. (2022). The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. American Journal of Physiology-Cell Physiology, 322(3), C521-C545. PMID35138178PMC8917930 (available on 2023-03-01) doi:10.1152/ajpcell.00451.2021
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID23172919PMC3609577doi:10.2337/db12-1139
Clayton, Z. S., Hutton, D. A., Brunt, V. E., VanDongen, N. S., Ziemba, B. P., Casso, A. G., … & Seals, D. R. (2021). Apigenin restores endothelial function by ameliorating oxidative stress, reverses aortic stiffening, and mitigates vascular inflammation with aging. American Journal of Physiology-Heart and Circulatory Physiology, 321(1), H185-H196. PMID34114892PMC8321807 (available on 2022-07-01) doi:10.1152/ajpheart.00118.2021