Витік (машинне навчання) (Ukrainian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Витік (машинне навчання)" in Ukrainian language version.

refsWebsite
Global rank Ukrainian rank
1st place
1st place
120th place
208th place
2nd place
4th place
9th place
7th place
23rd place
72nd place

doi.org

  • Shachar Kaufman; Saharon Rosset; Claudia Perlich (January 2011). Leakage in Data Mining: Formulation, Detection, and Avoidance. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 6: 556—563. doi:10.1145/2020408.2020496. Процитовано 13 січня 2020. (англ.)

researchgate.net

  • Shachar Kaufman; Saharon Rosset; Claudia Perlich (January 2011). Leakage in Data Mining: Formulation, Detection, and Avoidance. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 6: 556—563. doi:10.1145/2020408.2020496. Процитовано 13 січня 2020. (англ.)

twitter.com

  • Nick, Roberts (16 листопада 2017). Replying to @AndrewYNg @pranavrajpurkar and 2 others. Brooklyn, NY, USA: Twitter. Архів оригіналу за 10 June 2018. Процитовано 13 січня 2020. Replying to @AndrewYNg @pranavrajpurkar and 2 others ... Were you concerned that the network could memorize patient anatomy since patients cross train and validation? “ChestX-ray14 dataset contains 112,120 frontal-view X-ray images of 30,805 unique patients. We randomly split the entire dataset into 80% training, and 20% validation.” (англ.)

web.archive.org

  • Guts, Yuriy (30 жовтня 2018). Yuriy Guts. TARGET LEAKAGE IN MACHINE LEARNING. AI Ukraine Conference. Ukraine. Архів оригіналу (Talk) за 17 листопада 2020. Процитовано 14 листопада 2020. {{cite conference}}: Проігноровано невідомий параметр |lay-url= (довідка) (англ.)
  • Nick, Roberts (16 листопада 2017). Replying to @AndrewYNg @pranavrajpurkar and 2 others. Brooklyn, NY, USA: Twitter. Архів оригіналу за 10 June 2018. Процитовано 13 січня 2020. Replying to @AndrewYNg @pranavrajpurkar and 2 others ... Were you concerned that the network could memorize patient anatomy since patients cross train and validation? “ChestX-ray14 dataset contains 112,120 frontal-view X-ray images of 30,805 unique patients. We randomly split the entire dataset into 80% training, and 20% validation.” (англ.)

youtube.com