Analysis of information sources in references of the Wikipedia article "عدم التحدب (اقتصاد)" in Arabic language version.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة) ("Errata". Econometrica. ج. 43 رقم 5–6. 1975. ص. 1010. DOI:10.2307/1911353. JSTOR:1911353. MR:0443878. {{استشهاد بخبر}}
: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |1=
(مساعدة))Samuelson، Paul A. (1950). "The problem of integrability in utility theory". Economica. New Series. ج. 17. ص. 355–385. DOI:10.2307/2549499. JSTOR:2549499. MR:0043436.It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة)For the نقش to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr (1969), Arrow & Hahn (1971, p. 169) quote جون ميلتون's description of the (non-convex) Serbonian Bog in الفردوس المفقود (Book II, lines 592–594):A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة) ("Errata". Econometrica. ج. 43 رقم 5–6. 1975. ص. 1010. DOI:10.2307/1911353. JSTOR:1911353. MR:0443878. {{استشهاد بخبر}}
: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |1=
(مساعدة)){{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة){{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة) ("Errata". Econometrica. ج. 43 رقم 5–6. 1975. ص. 1010. DOI:10.2307/1911353. JSTOR:1911353. MR:0443878. {{استشهاد بخبر}}
: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |1=
(مساعدة))Samuelson، Paul A. (1950). "The problem of integrability in utility theory". Economica. New Series. ج. 17. ص. 355–385. DOI:10.2307/2549499. JSTOR:2549499. MR:0043436.It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة)For the نقش to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr (1969), Arrow & Hahn (1971, p. 169) quote جون ميلتون's description of the (non-convex) Serbonian Bog in الفردوس المفقود (Book II, lines 592–594):A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة) ("Errata". Econometrica. ج. 43 رقم 5–6. 1975. ص. 1010. DOI:10.2307/1911353. JSTOR:1911353. MR:0443878. {{استشهاد بخبر}}
: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |1=
(مساعدة)){{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة)Samuelson، Paul A. (1950). "The problem of integrability in utility theory". Economica. New Series. ج. 17. ص. 355–385. DOI:10.2307/2549499. JSTOR:2549499. MR:0043436.It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة)For the نقش to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr (1969), Arrow & Hahn (1971, p. 169) quote جون ميلتون's description of the (non-convex) Serbonian Bog in الفردوس المفقود (Book II, lines 592–594):A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Samuelson، Paul A. (1950). "The problem of integrability in utility theory". Economica. New Series. ج. 17. ص. 355–385. DOI:10.2307/2549499. JSTOR:2549499. MR:0043436.It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
{{استشهاد بخبر}}
: الوسيط |ref=harv
غير صالح (مساعدة)For the نقش to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr (1969), Arrow & Hahn (1971, p. 169) quote جون ميلتون's description of the (non-convex) Serbonian Bog in الفردوس المفقود (Book II, lines 592–594):A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.