صياغة فضاء الطور (Arabic Wikipedia)

Analysis of information sources in references of the Wikipedia article "صياغة فضاء الطور" in Arabic language version.

refsWebsite
Global rank Arabic rank
2nd place
5th place
18th place
33rd place
69th place
207th place

arxiv.org

  • Curtright، T. L.؛ Zachos، C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. ج. 01: 37–46. arXiv:1104.5269. DOI:10.1142/S2251158X12000069.
  • Curtright، T.؛ Fairlie، D.؛ Zachos، C. (1998). "Features of time-independent Wigner functions". Physical Review D. ج. 58 ع. 2: 025002. arXiv:hep-th/9711183. Bibcode:1998PhRvD..58b5002C. DOI:10.1103/PhysRevD.58.025002.
  • M. Oliva, D. Kakofengitis, and O. Steuernagel (2018). "Anharmonic quantum mechanical systems do not feature phase space trajectories". Physica A. ج. 502: 201–210. arXiv:1611.03303. Bibcode:2018PhyA..502..201O. DOI:10.1016/j.physa.2017.10.047.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  • Krivoruchenko، M. I.؛ Faessler، Amand (2007). "Weyl's symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics". Journal of Mathematical Physics. ج. 48 ع. 5: 052107. arXiv:quant-ph/0604075. Bibcode:2007JMP....48e2107K. DOI:10.1063/1.2735816.

doi.org

  • H. J. Groenewold, "On the Principles of elementary quantum mechanics", Physica,12 (1946) pp. 405–460. دُوِي:10.1016/S0031-8914(46)80059-4.
  • J. E. Moyal, "Quantum mechanics as a statistical theory", Proceedings of the Cambridge Philosophical Society, 45 (1949) pp. 99–124. دُوِي:10.1017/S0305004100000487.
  • H. Weyl, "Quantenmechanik und Gruppentheorie", Zeitschrift für Physik, 46 (1927) pp. 1–46, دُوِي:10.1007/BF02055756.
  • E. P. Wigner, "On the quantum correction for thermodynamic equilibrium", Phys. Rev. 40 (June 1932) 749–759. دُوِي:10.1103/PhysRev.40.749.
  • S. T. Ali, M. Engliš, "Quantization Methods: A Guide for Physicists and Analysts". Rev. Math. Phys., 17 (2005) pp. 391–490. دُوِي:10.1142/S0129055X05002376.
  • Curtright، T. L.؛ Zachos، C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. ج. 01: 37–46. arXiv:1104.5269. DOI:10.1142/S2251158X12000069.
  • Cohen، L. (1966). "Generalized Phase-Space Distribution Functions". Journal of Mathematical Physics. ج. 7 ع. 5: 781–786. Bibcode:1966JMP.....7..781C. DOI:10.1063/1.1931206.
  • G. S. Agarwal and E. Wolf "Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. II. Quantum Mechanics in Phase Space", Phys. Rev. D,2 (1970) pp. 2187–2205. دُوِي:10.1103/PhysRevD.2.2187.
  • E. C. G. Sudarshan "Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams", Phys. Rev. Lett.,10 (1963) pp. 277–279. دُوِي:10.1103/PhysRevLett.10.277.
  • R. J. Glauber "Coherent and Incoherent States of the Radiation Field", Phys. Rev.,131 (1963) pp. 2766–2788. دُوِي:10.1103/PhysRev.131.2766.
  • G. S. Agarwal and E. Wolf "Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Noncommuting Operators", Phys. Rev. D,2 (1970) pp. 2161–2186. دُوِي:10.1103/PhysRevD.2.2161.
  • K. E. Cahill and R. J. Glauber "Ordered Expansions in Boson Amplitude Operators", Phys. Rev.,177 (1969) pp. 1857–1881. دُوِي:10.1103/PhysRev.177.1857; K. E. Cahill and R. J. Glauber "Density Operators and Quasiprobability Distributions", Phys. Rev.,177 (1969) pp. 1882–1902. دُوِي:10.1103/PhysRev.177.1882.
  • M. Lax "Quantum Noise. XI. Multitime Correspondence between Quantum and Classical Stochastic Processes", Phys. Rev.,172 (1968) pp. 350–361. دُوِي:10.1103/PhysRev.172.350.
  • G. Baker, “Formulation of Quantum Mechanics Based on the Quasi-probability Distribution Induced on Phase Space,” Physical Review, 109 (1958) pp. 2198–2206. دُوِي:10.1103/PhysRev.109.2198
  • Curtright، T.؛ Fairlie، D.؛ Zachos، C. (1998). "Features of time-independent Wigner functions". Physical Review D. ج. 58 ع. 2: 025002. arXiv:hep-th/9711183. Bibcode:1998PhRvD..58b5002C. DOI:10.1103/PhysRevD.58.025002.
  • C. L. Mehta "Phase‐Space Formulation of the Dynamics of Canonical Variables", J. Math. Phys.,5 (1964) pp. 677–686. دُوِي:10.1063/1.1704163
  • M. Oliva, D. Kakofengitis, and O. Steuernagel (2018). "Anharmonic quantum mechanical systems do not feature phase space trajectories". Physica A. ج. 502: 201–210. arXiv:1611.03303. Bibcode:2018PhyA..502..201O. DOI:10.1016/j.physa.2017.10.047.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  • Marinov، M.S. (1991). "A new type of phase-space path integral". Physics Letters A. ج. 153 ع. 1: 5–11. Bibcode:1991PhLA..153....5M. DOI:10.1016/0375-9601(91)90352-9.
  • Krivoruchenko، M. I.؛ Faessler، Amand (2007). "Weyl's symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics". Journal of Mathematical Physics. ج. 48 ع. 5: 052107. arXiv:quant-ph/0604075. Bibcode:2007JMP....48e2107K. DOI:10.1063/1.2735816.

harvard.edu

ui.adsabs.harvard.edu