فرضية المحاكاة (Arabic Wikipedia)

Analysis of information sources in references of the Wikipedia article "فرضية المحاكاة" in Arabic language version.

refsWebsite
Global rank Arabic rank
1st place
1st place
2nd place
5th place
low place
low place
69th place
207th place
low place
low place
18th place
33rd place
7th place
23rd place
474th place
1,970th place
6th place
3rd place
26th place
31st place
9th place
18th place
137th place
567th place
low place
low place
896th place
815th place
low place
low place

archive.org

arxiv.org

  • Davies، P. C. W. (2004). "Multiverse Cosmological Models". Modern Physics Letters A. ج. 19 ع. 10: 727–743. arXiv:astro-ph/0403047. Bibcode:2004MPLA...19..727D. DOI:10.1142/S021773230401357X.
  • Beane، Silas؛ Zohreh Davoudi؛ Martin J. Savage (9 نوفمبر 2012). "Constraints on the Universe as a Numerical Simulation". arXiv:1210.1847. Bibcode:2014EPJA...50..148B. DOI:10.1140/epja/i2014-14148-0. ABSTRACT Observable consequences of the hypothesis that the observed universe is a numerical simulation performed on a cubic space-time lattice or grid are explored. The simulation scenario is first motivated by extrapolating current trends in computational resource requirements for lattice QCD into the future. Using the historical development of lattice gauge theory technology as a guide, we assume that our universe is an early numerical simulation with unimproved Wilson fermion discretization and investigate potentially-observable consequences. Among the observables that are considered are the muon g-2 and the current differences between determinations of alpha, but the most stringent bound on the inverse lattice spacing of the universe, b−1 > ~ 10^11 GeV, is derived from the high-energy cut off of the cosmic ray spectrum. The numerical simulation scenario could reveal itself in the distributions of the highest energy cosmic rays exhibiting a degree of rotational symmetry breaking that reflects the structure of the underlying lattice.
  • Conitzer، Vincent (2019). "A Puzzle about Further Facts". Erkenntnis. ج. 84 ع. 3: 727–739. arXiv:1802.01161. DOI:10.1007/s10670-018-9979-6.

consc.net

doi.org

  • Bostrom, Nick (2003). "Are You Living in a Computer Simulation?". Philosophical Quarterly. ج. 53 ع. 211: 243–255. DOI:10.1111/1467-9213.00309. مؤرشف من الأصل في 2020-12-09.
  • Weatherson، Brian (2003). "Are You a Sim?". The Philosophical Quarterly. ج. 53 ع. 212: 425–431. DOI:10.1111/1467-9213.00323. JSTOR:3543127.
  • Davies، P. C. W. (2004). "Multiverse Cosmological Models". Modern Physics Letters A. ج. 19 ع. 10: 727–743. arXiv:astro-ph/0403047. Bibcode:2004MPLA...19..727D. DOI:10.1142/S021773230401357X.
  • Beane، Silas؛ Zohreh Davoudi؛ Martin J. Savage (9 نوفمبر 2012). "Constraints on the Universe as a Numerical Simulation". arXiv:1210.1847. Bibcode:2014EPJA...50..148B. DOI:10.1140/epja/i2014-14148-0. ABSTRACT Observable consequences of the hypothesis that the observed universe is a numerical simulation performed on a cubic space-time lattice or grid are explored. The simulation scenario is first motivated by extrapolating current trends in computational resource requirements for lattice QCD into the future. Using the historical development of lattice gauge theory technology as a guide, we assume that our universe is an early numerical simulation with unimproved Wilson fermion discretization and investigate potentially-observable consequences. Among the observables that are considered are the muon g-2 and the current differences between determinations of alpha, but the most stringent bound on the inverse lattice spacing of the universe, b−1 > ~ 10^11 GeV, is derived from the high-energy cut off of the cosmic ray spectrum. The numerical simulation scenario could reveal itself in the distributions of the highest energy cosmic rays exhibiting a degree of rotational symmetry breaking that reflects the structure of the underlying lattice.
  • Conitzer، Vincent (2019). "A Puzzle about Further Facts". Erkenntnis. ج. 84 ع. 3: 727–739. arXiv:1802.01161. DOI:10.1007/s10670-018-9979-6.

gizmodo.com

io9.gizmodo.com

  • Grabianowski، Ed (7 مايو 2011). "You're living in a computer simulation, and math proves it". Gizmodo. مؤرشف من الأصل في 2019-01-11. اطلع عليه بتاريخ 2016-10-29.

harvard.edu

ui.adsabs.harvard.edu

  • Davies، P. C. W. (2004). "Multiverse Cosmological Models". Modern Physics Letters A. ج. 19 ع. 10: 727–743. arXiv:astro-ph/0403047. Bibcode:2004MPLA...19..727D. DOI:10.1142/S021773230401357X.
  • Beane، Silas؛ Zohreh Davoudi؛ Martin J. Savage (9 نوفمبر 2012). "Constraints on the Universe as a Numerical Simulation". arXiv:1210.1847. Bibcode:2014EPJA...50..148B. DOI:10.1140/epja/i2014-14148-0. ABSTRACT Observable consequences of the hypothesis that the observed universe is a numerical simulation performed on a cubic space-time lattice or grid are explored. The simulation scenario is first motivated by extrapolating current trends in computational resource requirements for lattice QCD into the future. Using the historical development of lattice gauge theory technology as a guide, we assume that our universe is an early numerical simulation with unimproved Wilson fermion discretization and investigate potentially-observable consequences. Among the observables that are considered are the muon g-2 and the current differences between determinations of alpha, but the most stringent bound on the inverse lattice spacing of the universe, b−1 > ~ 10^11 GeV, is derived from the high-energy cut off of the cosmic ray spectrum. The numerical simulation scenario could reveal itself in the distributions of the highest energy cosmic rays exhibiting a degree of rotational symmetry breaking that reflects the structure of the underlying lattice.

ijqf.org

  • Campbell، Tom؛ Owhadi، Houman؛ Sauvageau، Joe؛ Watkinson، David (17 يونيو 2017). "On Testing the Simulation Theory". International Journal of Quantum Foundations. ج. 3 ع. 3: 78–99. مؤرشف من الأصل في 2020-11-19.

jetpress.org

jstor.org

nbcnews.com

nytimes.com

scientificamerican.com

simulation-argument.com

web.archive.org

youtube.com