Zuckerkandl E, Pauling L. Molecules as documents of evolutionary history // J. Theor. Biol. 8 (2). 1965. DOI:10.1016/0022-5193(65)90083-4. с. 357 – 66.
Woese C, Fox G. Phylogenetic structure of the prokaryotic domain: the primary kingdoms // Proc Natl Acad Sci USA 74 (11). 1977. DOI:10.1073/pnas.74.11.5088. с. 5088 – 90.
Robertson CE, Harris JK, Spear JR, Pace NR. Phylogenetic diversity and ecology of environmental Archaea // Curr. Opin. Microbiol. 8 (6). 2005. DOI:10.1016/j.mib.2005.10.003. с. 638–42.
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont // Nature 417 (6884). 2002. DOI:10.1038/417063a. с. 27–8.
Chappe B, Albrecht P, Michaelis W. Polar Lipids of Archaebacteria in Sediments and Petroleums // Science 217 (4554). Юли 1982. DOI:10.1126/science.217.4554.65. с. 65 – 66.
Brocks JJ, Logan GA, Buick R, Summons RE. Archean molecular fossils and the early rise of eukaryotes // Science 285 (5430). 1999. DOI:10.1126/science.285.5430.1033. с. 1033–6.
Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. Reassessing the first appearance of eukaryotes and cyanobacteria // Nature 455 (7216). Октомври 2008. DOI:10.1038/nature07381. с. 1101 – 4.
Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world // Genome Res. 17 (11). 2007. DOI:10.1101/gr.6454307. с. 1572–85.
Woese CR, Gupta R. Are archaebacteria merely derived 'prokaryotes'? // Nature 289 (5793). 1981. DOI:10.1038/289095a0. с. 95–6.
Lake JA. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences // Nature 331 (6152). Януари 1988. DOI:10.1038/331184a0. с. 184–6.
Gouy M, Li WH. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree // Nature 339 (6220). Май 1989. DOI:10.1038/339145a0. с. 145–7.
Nelson KE, Clayton RA, Gill SR, et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima // Nature 399 (6734). 1999. DOI:10.1038/20601. с. 323–9.
Hixon WG, Searcy DG. Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts // BioSystems 29 (2 – 3). 1993. DOI:10.1016/0303-2647(93)90091-P. с. 151–60.
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases // Nat. Rev. Microbiol. 2 (2). 2004. DOI:10.1038/nrmicro821. с. 95–108.
Rudolph C, Wanner G, Huber R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology // Appl. Environ. Microbiol. 67 (5). Май 2001. DOI:10.1128/AEM.67.5.2336-2344.2001. с. 2336 – 44.
Thomas NA, Bardy SL, Jarrell KF. The archaeal flagellum: a different kind of prokaryotic motility structure // FEMS Microbiol. Rev. 25 (2). 2001. DOI:10.1111/j.1574-6976.2001.tb00575.x. с. 147–74.
Hanford MJ, Peeples TL. Archaeal tetraether lipids: unique structures and applications // Appl. Biochem. Biotechnol. 97 (1). Януари 2002. DOI:10.1385/ABAB:97:1:45. с. 45 – 62.
Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid // Extremophiles 8 (5). Октомври 2004. DOI:10.1007/s00792-004-0404-5. с. 411 – 9.
Engelhardt H, Peters J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions // J Struct Biol 124 (2–3). 1998. DOI:10.1006/jsbi.1998.4070. с. 276 – 302.