Complex de l'exosoma (Catalan Wikipedia)

Analysis of information sources in references of the Wikipedia article "Complex de l'exosoma" in Catalan language version.

refsWebsite
Global rank Catalan rank
2nd place
6th place
4th place
7th place
low place
low place

biochemsoctrans.org

doi.org

dx.doi.org

  • Mitchell et al.. The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases. 91, 1997, p. 457–466. DOI 10.1016/S0092-8674(00)80432-8. 
  • Allmang et al.. The yeast exosome and human PM-Scl are related complexes of 3'→ 5' exonucleases. 13, 1999, p. 2148–58. DOI 10.1101/gad.13.16.2148. 
  • Brouwer et al.. Three novel components of the human exosome. 276, 2001, p. 6177–84. DOI 10.1074/jbc.M007603200. 
  • Chen et al.. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. 107, 2001, p. 451–64. DOI 10.1016/S0092-8674(01)00578-5. 
  • Koonin et al.. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. 11, 2001, p. 240–52. DOI 10.1101/gr.162001. 
  • Evguenieva-Hackenberg et al.. An exosome-like complex in Sulfolobus solfataricus. 4, 2003, p. 889–93. DOI 10.1038/sj.embor.embor929. 
  • Schilders et al.. Cell and molecular biology of the exosome: how to make or break an RNA. 251, 2006, p. 159–208. DOI 10.1016/S0074-7696(06)51005-8. 
  • Lorentzen et al.. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. 12, 2005, p. 575–81. DOI 10.1038/nsmb952. 
  • Shen et al.. A view to a kill: structure of the RNA exosome. 127, 2006, p. 1093–5. DOI 10.1016/j.cell.2006.11.035. 
  • Raijmakers et al.. Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. 323, 2002, p. 653–63. DOI 10.1016/S0022-2836(02)00947-6. 
  • Walter et al.. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. 62, 2006, p. 1076–89. DOI 10.1111/j.1365-2958.2006.05393.x. 
  • Ishii et al.. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. 278, 2003, p. 32397–404. DOI 10.1074/jbc.M300639200. 
  • Symmons et al.. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. 8, 2000, p. 1215–26. DOI 10.1016/S0969-2126(00)00521-9. 
  • Lin-Chao et al.. The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. 14, 2007, p. 523–32. DOI 10.1007/s11373-007-9178-y. 
  • Harlow et al.. Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. 13, 2004, p. 668–77. DOI 10.1110/ps.03477004. 
  • Schneider et al.. The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. 27, 2007, p. 324–31. DOI 10.1016/j.molcel.2007.06.006. 
  • Mian et al.. Comparative sequence analysis of ribonucleases HII, III, II PH and D. 25, 1997, p. 3187–3195. DOI 10.1093/nar/25.16.3187. 
  • Raijmakers et al.. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. 83, 2004, p. 175–83. DOI 10.1078/0171-9335-00385. 
  • Wang et al.. Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. 11, 2005, p. 1291–302. DOI 10.1261/rna.2060405. 
  • LaCava et al.. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. 121, 2005, p. 713–24. DOI 10.1016/j.cell.2005.04.029. 
  • Liu et al.. Erratum: Reconstitution, activities, and structure of the eukaryotic RNA exosome. 131, 2007, p. 188–189. DOI 10.1016/j.cell.2007.09.019. 
  • Dziembowski et al.. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. 14, 2007, p. 15–22. DOI 10.1038/nsmb1184. 
  • Liu et al.. Reconstitution, activities, and structure of the eukaryotic RNA exosome. 127, 2006, p. 1223–37. DOI 10.1016/j.cell.2006.10.037. 
  • Lorentzen et al.. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. 20, 2005, p. 473–81. DOI 10.1016/j.molcel.2005.10.020. 
  • LeJeune et al.. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. 12, 2003, p. 675–87. DOI 10.1016/S1097-2765(03)00349-6. 
  • Wilson et al.. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. 177, 2007, p. 773. DOI 10.1534/genetics.107.073205. 
  • Lin et al.. Localization of AU-rich element-containing mRNA in cytoplasmic granules containing exosome subunits. 282, 2007, p. 19958–68. DOI 10.1074/jbc.M702281200. 
  • Allmang et al.. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. 18, 1999, p. 5399–410. DOI 10.1093/emboj/18.19.5399. 
  • Schilders et al.. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. 33, 2005, p. 6795–804. DOI 10.1093/nar/gki982. 
  • van Dijk et al.. Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. 13, 2007, p. 1027–35. DOI 10.1261/rna.575107. 
  • Carpousis AJ. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. 30, 2002, p. 150–5. DOI 10.1042/BST0300150. 
  • Houseley J, LaCava J, Tollervey D «RNA-quality control by the exosome». Nat. Rev. Mol. Cell Biol., 7, 7, Juliol 2006, pàg. 529–39. DOI: 10.1038/nrm1964. PMID: 16829983.
  • Wyers F, Rougemaille M, Badis G, et al «Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase». Cell, 121, 5, Juny 2005, pàg. 725–37. DOI: 10.1016/j.cell.2005.04.030. PMID: 15935759.
  • Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A «Widespread bidirectional promoters are the major source of cryptic transcripts in yeast». Nature, 457, 7232, Febrer 2009, pàg. 1038–42. DOI: 10.1038/nature07747. PMID: 19169244.
  • Preker P, Nielsen J, Kammler S, et al «RNA exosome depletion reveals transcription upstream of active human promoters». Science, 322, 5909, Desembre 2008, pàg. 1851–4. DOI: 10.1126/science.1164096. PMID: 19056938.
  • J.E. Pope. Scleroderma overlap syndromes. 14, 2002, p. 704–10. DOI 10.1097/00002281-200211000-00013. 
  • Targoff et al.. Nucleolar localization of the PM-Scl antigen. 28, 1985, p. 226–30. DOI 10.1002/art.1780280221. 
  • Raijmakers et al.. PM-Scl-75 is the main autoantigen in patients with the polymyositis/scleroderma overlap syndrome. 50, 2004, p. 565–9. DOI 10.1002/art.20056. 
  • Brouwer et al.. {{{títol}}}. 4, 2002, p. 134–8. DOI 10.1186/ar389. 
  • Schilders et al.. C1D is a major autoantibody target in patients with the polymyositis-scleroderma overlap syndrome. 56, 2007, p. 2449–54. DOI 10.1002/art.22710. 
  • Mahler et al.. Clinical evaluation of autoantibodies to a novel PM/Scl peptide antigen. 7, 2005, p. R704–13. DOI 10.1186/ar1729. 
  • Mahler et al.. Novel aspects of autoantibodies to the PM/Scl complex: Clinical, genetic and diagnostic insights. 6, 2007, p. 432–7. DOI 10.1016/j.autrev.2007.01.013. 
  • Jablonska et al.. Scleromyositis: a scleroderma/polymyositis overlap syndrome. 17, 1998, p. 465–7. DOI 10.1007/BF01451281. 
  • Lum et al.. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. 116, 2004, p. 121–37. DOI 10.1016/S0092-8674(03)01035-3. 

nih.gov

ncbi.nlm.nih.gov

  • Lebreton et al. «Endonucleolytic RNA cleavage by a eukaryotic exosome.». Nature, 456, 2008, pàg. 993-6. PMID: 19060886.
  • Schneider et al. «The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome.». Nucleic Acids Research, 37, 2009, pàg. 1127-40. PMID: 19129231.
  • Houseley J, LaCava J, Tollervey D «RNA-quality control by the exosome». Nat. Rev. Mol. Cell Biol., 7, 7, Juliol 2006, pàg. 529–39. DOI: 10.1038/nrm1964. PMID: 16829983.
  • Wyers F, Rougemaille M, Badis G, et al «Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase». Cell, 121, 5, Juny 2005, pàg. 725–37. DOI: 10.1016/j.cell.2005.04.030. PMID: 15935759.
  • Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A «Widespread bidirectional promoters are the major source of cryptic transcripts in yeast». Nature, 457, 7232, Febrer 2009, pàg. 1038–42. DOI: 10.1038/nature07747. PMID: 19169244.
  • Preker P, Nielsen J, Kammler S, et al «RNA exosome depletion reveals transcription upstream of active human promoters». Science, 322, 5909, Desembre 2008, pàg. 1851–4. DOI: 10.1126/science.1164096. PMID: 19056938.