Derivada fractal (Catalan Wikipedia)

Analysis of information sources in references of the Wikipedia article "Derivada fractal" in Catalan language version.

refsWebsite
Global rank Catalan rank
2nd place
6th place
18th place
40th place
1,849th place
2nd place
149th place
111th place

doi.org

dx.doi.org

  • Fractional Newton-Raphson Method
  • Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming
  • Torres-Hernandez, A.; Brambila-Paz, F. «Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods». Fractal and Fractional, vol. 5, 4, 29-12-2021, pàg. 240. DOI: 10.3390/fractalfract5040240.
  • Shams, M.; Kausar, N.; Agarwal, P. [et al.].. «Fuzzy fractional Caputo-type numerical scheme for solving fuzzy nonlinear equations». A: Fractional Differential Equations, 2024, p. 167–175. DOI 10.1016/B978-0-44-315423-2.00016-3. ISBN 978-0-443-15423-2. 
  • Shams, M.; Kausar, N.; Agarwal, P. [et al.].. «Fractional Caputo-type simultaneous scheme for finding all polynomial roots». A: Recent Trends in Fractional Calculus and Its Applications, 2024, p. 261–272. DOI 10.1016/B978-0-44-318505-2.00021-0. ISBN 978-0-443-18505-2. 
  • Al-Nadhari, A.M.; Abderrahmani, S.; Hamadi, D.; Legouirah, M. «The efficient geometrical nonlinear analysis method for civil engineering structures». Asian Journal of Civil Engineering, vol. 25, 4, 2024, pàg. 3565–3573. DOI: 10.1007/s42107-024-00996-z.
  • Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. «On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications». Fractals, vol. 31, 4, 2023, pàg. 2340075–2340085. Bibcode: 2023Fract..3140075S. DOI: 10.1142/S0218348X23400753.
  • Wang, X.; Jin, Y.; Zhao, Y. «Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems». Symmetry, vol. 13, 6, 2021, pàg. 943. Bibcode: 2021Symm...13..943W. DOI: 10.3390/sym13060943.
  • Tverdyi, D.; Parovik, R. «Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation». Fractal and Fractional, vol. 6, 1, 2021, pàg. 23. DOI: 10.3390/fractalfract6010023.
  • Tverdyi, D.; Parovik, R. «Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect». Fractal and Fractional, vol. 6, 3, 2022, pàg. 163. DOI: 10.3390/fractalfract6030163.
  • Srivastava, H.M. «Editorial for the Special Issue "Operators of Fractional Calculus and Their Multidisciplinary Applications"». Fractal and Fractional, vol. 7, 5, 2023, pàg. 415. DOI: 10.3390/fractalfract7050415.
  • Shams, M.; Carpentieri, B. «Efficient inverse fractional neural network-based simultaneous schemes for nonlinear engineering applications». Fractal and Fractional, vol. 7, 12, 2023, pàg. 849. DOI: 10.3390/fractalfract7120849.
  • Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. «Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach». Mathematics, vol. 11, 11, 2023, pàg. 2568. DOI: 10.3390/math11112568.
  • Shams, M.; Carpentieri, B. «On highly efficient fractional numerical method for solving nonlinear engineering models». Mathematics, vol. 11, 24, 2023, pàg. 4914. DOI: 10.3390/math11244914.
  • Martínez, F.; Kaabar, M.K.A.; Martínez, I. «Novel Results on Legendre Polynomials in the Sense of a Generalized Fractional Derivative». Mathematical and Computational Applications, vol. 29, 4, 2024, pàg. 54. DOI: 10.3390/mca29040054.
  • Shams, M.; Kausar, N.; Agarwal, P.; Jain, S.; Salman, M.A.; Shah, M.A. «On family of the Caputo-type fractional numerical scheme for solving polynomial equations». Applied Mathematics in Science and Engineering, vol. 31, 1, 2023, pàg. 2181959. DOI: 10.1080/27690911.2023.2181959.
  • Nayak, S.K.; Parida, P.K. «Global convergence analysis of Caputo fractional Whittaker method with real world applications». Cubo (Temuco), vol. 26, 1, 2024, pàg. 167–190. DOI: 10.56754/0719-0646.2601.167.
  • Rebollar-Rebollar, S.; Martínez-Damián, M.Á.; Hernández-Martínez, J.; Hernández-Aguirre, P. «Óptimo económico en una función Cobb-Douglas bivariada: una aplicación a ganadería de carne semi extensiva». Revista mexicana de ciencias agrícolas, vol. 12, 8, 2021, pàg. 1517–1523. DOI: 10.29312/remexca.v12i8.2915.
  • Mogro, M.F.; Jácome, F.A.; Cruz, G.M.; Zurita, J.R. «Sorting Line Assisted by A Robotic Manipulator and Artificial Vision with Active Safety». Journal of Robotics and Control (JRC), vol. 5, 2, 2024, pàg. 388–396. DOI: 10.18196/jrc.v5i2.20327.
  • Luna-Fox, S.B.; Uvidia-Armijo, J.H.; Uvidia-Armijo, L.A.; Romero-Medina, W.Y. «Exploración comparativa de los métodos numéricos de Newton-Raphson y bisección para la resolución de ecuaciones no lineales». MQRInvestigar, vol. 8, 2, 2024, pàg. 642–655. DOI: 10.56048/MQR20225.8.2.2024.642-655.
  • Tvyordyj, D.A.; Parovik, R.I. «Mathematical modeling in MATLAB of solar activity cycles according to the growth-decline of the Wolf number». Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, vol. 41, 4, 2022, pàg. 47–64. DOI: 10.26117/2079-6641-2022-41-4-47-65.

doi.org

google.cat

books.google.cat

harvard.edu

adsabs.harvard.edu

  • Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. «On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications». Fractals, vol. 31, 4, 2023, pàg. 2340075–2340085. Bibcode: 2023Fract..3140075S. DOI: 10.1142/S0218348X23400753.
  • Wang, X.; Jin, Y.; Zhao, Y. «Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems». Symmetry, vol. 13, 6, 2021, pàg. 943. Bibcode: 2021Symm...13..943W. DOI: 10.3390/sym13060943.

sciencedirect.com