Kresge, N., Simoni, R. D., & Hill, R. L. (2005). A Role for Phosphoinositides in Signaling: the Work of Mabel R. Hokin and Lowell E. Hokin. Journal of Biological Chemistry, 280(30), e1–e2. https://doi.org/10.1016/s0021-9258(20)56673-8
Michell, R. H. (2008). Inositol derivatives: evolution and functions. Nature Reviews Molecular Cell Biology, 9(2), 151–161. https://doi.org/10.1038/nrm2334.
Majumder, A. L., Chatterjee, A., Dastidar, K. G., & Majee, M. (2003). Diversification and evolution of L‐myo‐inositol 1‐phosphate synthase1. FEBS Letters, 553(1–2), 3–10. https://doi.org/10.1016/s0014-5793(03)00974-8.
Torres, G., Jairo, & Samuel, D. (2015). Fosfolípidos: Propiedades y efectos sobre la salud. Nutrición Hospitalaria, 31(1), 76–83. https://doi.org/10.3305/nh.2015.31.1.7961
Borges-Araújo, L., & Fernandes, F. (2020). Structure and lateral organization of phosphatidylinositol 4,5-bisphosphate. Molecules, 25(17), 3885. https://doi.org/10.3390/molecules25173885
Hokin, M. R., & Hokin, L. E. (1953). ENZYME SECRETION AND THE INCORPORATION OF P32 INTO PHOSPHOLIPIDES OF PANCREAS SLICES. Journal of Biological Chemistry, 203(2), 967–977. https://doi.org/10.1016/s0021-9258(19)52367-5
Kooijman, E. E., King, K. E., Gangoda, M., & Gericke, A. (2009). Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes. Biochemistry, 48(40), 9360–9371. https://doi.org/10.1021/bi9008616
Sundler, R., & Akesson, B. (1975). Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. Journal of Biological Chemistry, 250(9), 3359–3367. https://doi.org/10.1016/s0021-9258(19)41523-8
Blunsom, N. J., & Cockcroft, S. (2020). Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1865(1), 158471. https://doi.org/10.1016/j.bbalip.2019.05.015
Clarke, O. B., Tomasek, D., Jorge, C. D., Dufrisne, M. B., Kim, M., Banerjee, S., Rajashankar, K. R., Shapiro, L., Hendrickson, W. A., Santos, H., & Mancia, F. (2015). Structural basis for phosphatidylinositol-phosphate biosynthesis. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9505
Williamson, F., & Morré, D. (1976). Distribution of phosphatidylinositol biosynthetic activities among cell fractions from rat liver. Biochemical and Biophysical Research Communications, 68(4), 1201–1205. https://doi.org/10.1016/0006-291x(76)90324-7
Lassing, I., & Lindberg, U. (1985). Specific Interaction Between Phosphatidylinositol 4,5-bisphosphate and Profilactin. Nature, 314(6010), 472–474. https://doi.org/10.1038/314472a0
Corbalán-García, S., & Gómez-Fernández, J. C. (2013). Classical Protein Kinases C Are Regulated by Concerted Interaction With Lipids: The Importance of Phosphatidylinositol-4,5-bisphosphate. Biophysical Reviews, 6(1), 3–14. https://doi.org/10.1007/s12551-013-0125-z
McLaurin, J., Franklin, T., Chakrabartty, A., & Fraser, P. (1998). Phosphatidylinositol and Inositol Involvement in Alzheimer Amyloid-β Fibril Growth and Arrest. Journal of Molecular Biology, 278(1), 183–194. https://doi.org/10.1006/jmbi.1998.1677
Cordoba, J., Jackson, S., & Jones, M. (1990). Mixed Monolayers of Phosphatidylinositol and Dipalmitoylphosphatidylcholine and Their Interaction With Liposomes. Colloids and Surfaces, 46(1), 85–94. https://doi.org/10.1016/0166-6622(90)80050-e
Tu-Sekine, B., & Kim, S. F. (2022). The Inositol Phosphate System—A coordinator of metabolic adaptability. International Journal of Molecular Sciences, 23(12), 6747. https://doi.org/10.3390/ijms23126747
Raghu, P. (2021). Emerging cell biological functions of phosphatidylinositol 5 phosphate 4 kinase. Current Opinion in Cell Biology, 71, 15–20. https://doi.org/10.1016/j.ceb.2021.01.012
Hawthorne, J. N. (1982). Inositol phospholipids. In J. N. Hawthorne & G. B. Ansell (Eds.), New Comprehensive Biochemistry (Vol. 4, pp. 263–278). Elsevier. https://doi.org/10.1016/S0167-7306(08)60011-3
Kim, H., McGrath, B. M., & Silverstone, P. H. (2005). A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI‐cycle) to psychiatric disorders—focus on magnetic resonance spectroscopy (MRS) studies. Human Psychopharmacology Clinical and Experimental, 20(5), 309–326. https://doi.org/10.1002/hup.693
Schlüter, K., Goldberg, Y., Taimor, G., Schäfer, M., & Piper, H. M. (1998). Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovascular Research, 40(1), 174–181. https://doi.org/10.1016/s0008-6363(98)00171-0
Csolle, M. P., Ooms, L. M., Papa, A., & Mitchell, C. A. (2020). PTEN and other PTDIns(3,4,5)P3 lipid phosphatases in breast cancer. International Journal of Molecular Sciences, 21(23), 9189. https://doi.org/10.3390/ijms21239189
Palmieri, M., Catimel, B., Mouradov, D., Sakthianandeswaren, A., Kapp, E., Ang, C., Williamson, N. A., Nowell, C. J., Christie, M., Desai, J., Gibbs, P., Burgess, A. W., & Sieber, O. M. (2023). PI3KΑ translocation mediates nuclear PtDINs(3,4,5)P3 effector signaling in colorectal cancer. Molecular & Cellular Proteomics, 22(4), 100529. https://doi.org/10.1016/j.mcpro.2023.100529
Kofuji, S., Kimura, H., Nakanishi, H., Nanjo, H., Takasuga, S., Liu, H., Eguchi, S., Nakamura, R., Itoh, R., Ueno, N., Asanuma, K., Huang, M., Koizumi, A., Habuchi, T., Yamazaki, M., Suzuki, A., Sasaki, J., & Sasaki, T. (2015). INPP4B is a PTDINS(3,4,5)P3 phosphatase that can act as a tumor suppressor. Cancer Discovery, 5(7), 730–739. https://doi.org/10.1158/2159-8290.cd-14-1329
Wallace, M. A. (1994). Effects of Alzheimer’s disease-related β amyloid protein fragments on enzymes metabolizing phosphoinositides in brain. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1227(3), 183–187. https://doi.org/10.1016/0925-4439(94)90093-0