Fosfatidilinositol (Catalan Wikipedia)

Analysis of information sources in references of the Wikipedia article "Fosfatidilinositol" in Catalan language version.

refsWebsite
Global rank Catalan rank
2nd place
6th place
low place
low place
low place
2,429th place
4th place
7th place
low place
low place

doi.org

  • Kresge, N., Simoni, R. D., & Hill, R. L. (2005). A Role for Phosphoinositides in Signaling: the Work of Mabel R. Hokin and Lowell E. Hokin. Journal of Biological Chemistry, 280(30), e1–e2. https://doi.org/10.1016/s0021-9258(20)56673-8
  • Michell R. H. (1975). Inositol phospholipids and cell surface receptor function. Biochimica et biophysica acta, 415(1), 81–47. https://doi.org/10.1016/0304-4157(75)90017-9
  • Michell, R. H. (2008). Inositol derivatives: evolution and functions. Nature Reviews Molecular Cell Biology, 9(2), 151–161. https://doi.org/10.1038/nrm2334.
  • Majumder, A. L., Chatterjee, A., Dastidar, K. G., & Majee, M. (2003). Diversification and evolution of L‐myo‐inositol 1‐phosphate synthase1. FEBS Letters, 553(1–2), 3–10. https://doi.org/10.1016/s0014-5793(03)00974-8.
  • Torres, G., Jairo, & Samuel, D. (2015). Fosfolípidos: Propiedades y efectos sobre la salud. Nutrición Hospitalaria, 31(1), 76–83. https://doi.org/10.3305/nh.2015.31.1.7961
  • Borges-Araújo, L., & Fernandes, F. (2020). Structure and lateral organization of phosphatidylinositol 4,5-bisphosphate. Molecules, 25(17), 3885. https://doi.org/10.3390/molecules25173885
  • Agranoff, B. W. (1983). II. Biochemical mechanisms in the phosphatidylinositol effect. Life Sciences, 32(18), 2047–2054. https://doi.org/10.1016/0024-3205(83)90092-9
  • Hokin, M. R., & Hokin, L. E. (1953). ENZYME SECRETION AND THE INCORPORATION OF P32 INTO PHOSPHOLIPIDES OF PANCREAS SLICES. Journal of Biological Chemistry, 203(2), 967–977. https://doi.org/10.1016/s0021-9258(19)52367-5
  • Kooijman, E. E., King, K. E., Gangoda, M., & Gericke, A. (2009). Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes. Biochemistry, 48(40), 9360–9371. https://doi.org/10.1021/bi9008616
  • Sundler, R., & Akesson, B. (1975). Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. Journal of Biological Chemistry, 250(9), 3359–3367. https://doi.org/10.1016/s0021-9258(19)41523-8
  • Blunsom, N. J., & Cockcroft, S. (2020). Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1865(1), 158471. https://doi.org/10.1016/j.bbalip.2019.05.015
  • Clarke, O. B., Tomasek, D., Jorge, C. D., Dufrisne, M. B., Kim, M., Banerjee, S., Rajashankar, K. R., Shapiro, L., Hendrickson, W. A., Santos, H., & Mancia, F. (2015). Structural basis for phosphatidylinositol-phosphate biosynthesis. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9505
  • Williamson, F., & Morré, D. (1976). Distribution of phosphatidylinositol biosynthetic activities among cell fractions from rat liver. Biochemical and Biophysical Research Communications, 68(4), 1201–1205. https://doi.org/10.1016/0006-291x(76)90324-7
  • Lassing, I., & Lindberg, U. (1985). Specific Interaction Between Phosphatidylinositol 4,5-bisphosphate and Profilactin. Nature, 314(6010), 472–474. https://doi.org/10.1038/314472a0
  • Corbalán-García, S., & Gómez-Fernández, J. C. (2013). Classical Protein Kinases C Are Regulated by Concerted Interaction With Lipids: The Importance of Phosphatidylinositol-4,5-bisphosphate. Biophysical Reviews, 6(1), 3–14. https://doi.org/10.1007/s12551-013-0125-z
  • McLaurin, J., Franklin, T., Chakrabartty, A., & Fraser, P. (1998). Phosphatidylinositol and Inositol Involvement in Alzheimer Amyloid-β Fibril Growth and Arrest. Journal of Molecular Biology, 278(1), 183–194. https://doi.org/10.1006/jmbi.1998.1677
  • Cordoba, J., Jackson, S., & Jones, M. (1990). Mixed Monolayers of Phosphatidylinositol and Dipalmitoylphosphatidylcholine and Their Interaction With Liposomes. Colloids and Surfaces, 46(1), 85–94. https://doi.org/10.1016/0166-6622(90)80050-e
  • Tu-Sekine, B., & Kim, S. F. (2022). The Inositol Phosphate System—A coordinator of metabolic adaptability. International Journal of Molecular Sciences, 23(12), 6747. https://doi.org/10.3390/ijms23126747
  • Raghu, P. (2021). Emerging cell biological functions of phosphatidylinositol 5 phosphate 4 kinase. Current Opinion in Cell Biology, 71, 15–20. https://doi.org/10.1016/j.ceb.2021.01.012
  • Hawthorne, J. N. (1982). Inositol phospholipids. In J. N. Hawthorne & G. B. Ansell (Eds.), New Comprehensive Biochemistry (Vol. 4, pp. 263–278). Elsevier. https://doi.org/10.1016/S0167-7306(08)60011-3
  • Kim, H., McGrath, B. M., & Silverstone, P. H. (2005). A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI‐cycle) to psychiatric disorders—focus on magnetic resonance spectroscopy (MRS) studies. Human Psychopharmacology Clinical and Experimental, 20(5), 309–326. https://doi.org/10.1002/hup.693
  • Schlüter, K., Goldberg, Y., Taimor, G., Schäfer, M., & Piper, H. M. (1998). Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovascular Research, 40(1), 174–181. https://doi.org/10.1016/s0008-6363(98)00171-0
  • Csolle, M. P., Ooms, L. M., Papa, A., & Mitchell, C. A. (2020). PTEN and other PTDIns(3,4,5)P3 lipid phosphatases in breast cancer. International Journal of Molecular Sciences, 21(23), 9189. https://doi.org/10.3390/ijms21239189
  • Palmieri, M., Catimel, B., Mouradov, D., Sakthianandeswaren, A., Kapp, E., Ang, C., Williamson, N. A., Nowell, C. J., Christie, M., Desai, J., Gibbs, P., Burgess, A. W., & Sieber, O. M. (2023). PI3KΑ translocation mediates nuclear PtDINs(3,4,5)P3 effector signaling in colorectal cancer. Molecular & Cellular Proteomics, 22(4), 100529. https://doi.org/10.1016/j.mcpro.2023.100529
  • Kofuji, S., Kimura, H., Nakanishi, H., Nanjo, H., Takasuga, S., Liu, H., Eguchi, S., Nakamura, R., Itoh, R., Ueno, N., Asanuma, K., Huang, M., Koizumi, A., Habuchi, T., Yamazaki, M., Suzuki, A., Sasaki, J., & Sasaki, T. (2015). INPP4B is a PTDINS(3,4,5)P3 phosphatase that can act as a tumor suppressor. Cancer Discovery, 5(7), 730–739. https://doi.org/10.1158/2159-8290.cd-14-1329
  • Wallace, M. A. (1994). Effects of Alzheimer’s disease-related β amyloid protein fragments on enzymes metabolizing phosphoinositides in brain. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1227(3), 183–187. https://doi.org/10.1016/0925-4439(94)90093-0

nih.gov

pubchem.ncbi.nlm.nih.gov

scbt.com

stonybrookmedicine.edu

cancer.stonybrookmedicine.edu

uah.es

biomodel.uah.es