Chemoproteomika (Czech Wikipedia)

Analysis of information sources in references of the Wikipedia article "Chemoproteomika" in Czech language version.

refsWebsite
Global rank Czech rank
2nd place
4th place
4th place
8th place
11th place
313th place
5th place
3rd place
18th place
99th place

doi.org

dx.doi.org

  • Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology. March 2021, s. 371–393. DOI 10.1016/j.chembiol.2021.01.012. PMID 33577749. S2CID 231910437. (English) 
  • Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology. March 2021, s. 371–393. DOI 10.1016/j.chembiol.2021.01.012. PMID 33577749. S2CID 231910437. (English) 
  • Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nature Reviews. Drug Discovery. July 2019, s. 495–496. DOI 10.1038/d41573-019-00074-z. PMID 31267067. S2CID 164564888. 
  • Nomura DK, Dix MM, Cravatt BF. Activity-based protein profiling for biochemical pathway discovery in cancer. Nature Reviews. Cancer. September 2010, s. 630–638. DOI 10.1038/nrc2901. PMID 20703252. 
  • Geoghegan KF, Johnson DS. Chemical Proteomic Technologies for Drug Target Identification. Annual Reports in Medicinal Chemistry. Elsevier, 2010, s. 345–360. ISBN 9780123809025. DOI 10.1016/s0065-7743(10)45021-6. 
  • Wang S, Tian Y, Wang M, Wang M, Sun GB, Sun XB. Advanced Activity-Based Protein Profiling Application Strategies for Drug Development. Frontiers in Pharmacology. 2018-04-09, s. 353. DOI 10.3389/fphar.2018.00353. PMID 29686618. 
  • Smith E, Collins I. Photoaffinity labeling in target- and binding-site identification. Future Medicinal Chemistry. February 2015, s. 159–183. DOI 10.4155/fmc.14.152. PMID 25686004. 
  • Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduction and Targeted Therapy. May 2020, s. 72. DOI 10.1038/s41392-020-0186-y. PMID 32435053. 
  • Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharmaceutica Sinica. B. October 2020, s. 1800–1813. DOI 10.1016/j.apsb.2020.04.016. PMID 33163336. 
  • Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules. November 2016, s. 1516. DOI 10.3390/molecules21111516. PMID 27845727. 
  • Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. November 2020, s. 122332. DOI 10.1016/j.jchromb.2020.122332. PMID 32871378. 
  • Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chemical Biology. March 2021, s. 394–423. DOI 10.1016/j.chembiol.2020.12.001. PMID 33357463. S2CID 229693161. 
  • Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chemical Biology. January 2011, s. 34–46. DOI 10.1021/cb100294v. PMID 21077692. 
  • Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D, Stein F, Typas A, Savitski MM. Thermal proteome profiling for interrogating protein interactions. Molecular Systems Biology. March 2020, s. e9232. DOI 10.15252/msb.20199232. PMID 32133759. 
  • Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America. December 2009, s. 21984–21989. DOI 10.1073/pnas.0910040106. PMID 19995983. Bibcode 2009PNAS..10621984L. 
  • Annis DA, Nickbarg E, Yang X, Ziebell MR, Whitehurst CE. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Current Opinion in Chemical Biology. October 2007, s. 518–526. DOI 10.1016/j.cbpa.2007.07.011. PMID 17931956. 
  • Prudent R, Annis DA, Dandliker PJ, Ortholand JY, Roche D. Exploring new targets and chemical space with affinity selection-mass spectrometry. Nature Reviews Chemistry. 2020-10-21, s. 62–71. DOI 10.1038/s41570-020-00229-2. S2CID 224811862. 
  • Zehender H, Le Goff F, Lehmann N, Filipuzzi I, Mayr LM. SpeedScreen: The "missing link" between genomics and lead discovery. Journal of Biomolecular Screening. September 2004, s. 498–505. DOI 10.1177/1087057104267605. PMID 15452336. S2CID 7135803. 
  • Chan JN, Vuckovic D, Sleno L, Olsen JB, Pogoutse O, Havugimana P, Hewel JA, Bajaj N, Wang Y, Musteata MF, Nislow C, Emili A. Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Molecular & Cellular Proteomics. July 2012, s. M111.016642. DOI 10.1074/mcp.M111.016642. PMID 22357554. 
  • Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design. June 2011, s. 146–157. DOI 10.2174/157340911795677602. PMID 21534921. 
  • Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today. June 2010, s. 444–450. DOI 10.1016/j.drudis.2010.03.013. PMID 20362693. 
  • Khedkar SA, Malde AK, Coutinho EC, Srivastava S. Pharmacophore modeling in drug discovery and development: an overview. Medicinal Chemistry. March 2007, s. 187–197. DOI 10.2174/157340607780059521. PMID 17348856. 
  • Spradlin JN, Zhang E, Nomura DK. Reimagining Druggability Using Chemoproteomic Platforms. Accounts of Chemical Research. April 2021, s. 1801–1813. DOI 10.1021/acs.accounts.1c00065. PMID 33733731. S2CID 232303398. 
  • Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. Journal of Proteome Research. February 2021, s. 1133–1152. DOI 10.1021/acs.jproteome.0c00764. PMID 33464917. 

harvard.edu

adsabs.harvard.edu

  • Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America. December 2009, s. 21984–21989. DOI 10.1073/pnas.0910040106. PMID 19995983. Bibcode 2009PNAS..10621984L. 

nih.gov

ncbi.nlm.nih.gov

  • Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology. March 2021, s. 371–393. DOI 10.1016/j.chembiol.2021.01.012. PMID 33577749. S2CID 231910437. (English) 
  • Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology. March 2021, s. 371–393. DOI 10.1016/j.chembiol.2021.01.012. PMID 33577749. S2CID 231910437. (English) 
  • Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nature Reviews. Drug Discovery. July 2019, s. 495–496. DOI 10.1038/d41573-019-00074-z. PMID 31267067. S2CID 164564888. 
  • Nomura DK, Dix MM, Cravatt BF. Activity-based protein profiling for biochemical pathway discovery in cancer. Nature Reviews. Cancer. September 2010, s. 630–638. DOI 10.1038/nrc2901. PMID 20703252. 
  • Wang S, Tian Y, Wang M, Wang M, Sun GB, Sun XB. Advanced Activity-Based Protein Profiling Application Strategies for Drug Development. Frontiers in Pharmacology. 2018-04-09, s. 353. DOI 10.3389/fphar.2018.00353. PMID 29686618. 
  • Smith E, Collins I. Photoaffinity labeling in target- and binding-site identification. Future Medicinal Chemistry. February 2015, s. 159–183. DOI 10.4155/fmc.14.152. PMID 25686004. 
  • Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduction and Targeted Therapy. May 2020, s. 72. DOI 10.1038/s41392-020-0186-y. PMID 32435053. 
  • Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharmaceutica Sinica. B. October 2020, s. 1800–1813. DOI 10.1016/j.apsb.2020.04.016. PMID 33163336. 
  • Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules. November 2016, s. 1516. DOI 10.3390/molecules21111516. PMID 27845727. 
  • Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. November 2020, s. 122332. DOI 10.1016/j.jchromb.2020.122332. PMID 32871378. 
  • Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chemical Biology. March 2021, s. 394–423. DOI 10.1016/j.chembiol.2020.12.001. PMID 33357463. S2CID 229693161. 
  • Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chemical Biology. January 2011, s. 34–46. DOI 10.1021/cb100294v. PMID 21077692. 
  • Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D, Stein F, Typas A, Savitski MM. Thermal proteome profiling for interrogating protein interactions. Molecular Systems Biology. March 2020, s. e9232. DOI 10.15252/msb.20199232. PMID 32133759. 
  • Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America. December 2009, s. 21984–21989. DOI 10.1073/pnas.0910040106. PMID 19995983. Bibcode 2009PNAS..10621984L. 
  • Annis DA, Nickbarg E, Yang X, Ziebell MR, Whitehurst CE. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Current Opinion in Chemical Biology. October 2007, s. 518–526. DOI 10.1016/j.cbpa.2007.07.011. PMID 17931956. 
  • Zehender H, Le Goff F, Lehmann N, Filipuzzi I, Mayr LM. SpeedScreen: The "missing link" between genomics and lead discovery. Journal of Biomolecular Screening. September 2004, s. 498–505. DOI 10.1177/1087057104267605. PMID 15452336. S2CID 7135803. 
  • Chan JN, Vuckovic D, Sleno L, Olsen JB, Pogoutse O, Havugimana P, Hewel JA, Bajaj N, Wang Y, Musteata MF, Nislow C, Emili A. Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Molecular & Cellular Proteomics. July 2012, s. M111.016642. DOI 10.1074/mcp.M111.016642. PMID 22357554. 
  • Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design. June 2011, s. 146–157. DOI 10.2174/157340911795677602. PMID 21534921. 
  • Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today. June 2010, s. 444–450. DOI 10.1016/j.drudis.2010.03.013. PMID 20362693. 
  • Khedkar SA, Malde AK, Coutinho EC, Srivastava S. Pharmacophore modeling in drug discovery and development: an overview. Medicinal Chemistry. March 2007, s. 187–197. DOI 10.2174/157340607780059521. PMID 17348856. 
  • Spradlin JN, Zhang E, Nomura DK. Reimagining Druggability Using Chemoproteomic Platforms. Accounts of Chemical Research. April 2021, s. 1801–1813. DOI 10.1021/acs.accounts.1c00065. PMID 33733731. S2CID 232303398. 
  • Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. Journal of Proteome Research. February 2021, s. 1133–1152. DOI 10.1021/acs.jproteome.0c00764. PMID 33464917. 

semanticscholar.org

api.semanticscholar.org

worldcat.org