Dendrimer (Czech Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dendrimer" in Czech language version.

refsWebsite
Global rank Czech rank
2nd place
4th place
4th place
8th place
6th place
10th place
18th place
99th place
621st place
2,192nd place
518th place
2,457th place
1st place
1st place
low place
low place
9,054th place
low place
459th place
340th place
low place
low place
3,558th place
low place
5th place
3rd place
11th place
313th place
low place
low place
low place
low place
low place
low place

archive.org

doi.org

dx.doi.org

  • D. Astruc; E. Boisselier; C. Ornelas. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Reviews. 2010, s. 1857–1959. DOI 10.1021/cr900327d. PMID 20356105. 
  • B. K. Nanjwade; H. M. Bechra; G. K. Derkar; F. V. Manvi; V. K. Nanjwade. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences. 2009, s. 185–196. DOI 10.1016/j.ejps.2009.07.008. PMID 19646528. 
  • Single-Crystal Structures of Polyphenylene Dendrimers. Chemistry: A European Journal. 2002, s. 3858–3864. DOI 10.1002/1521-3765(20020902)8:17<3858::AID-CHEM3858>3.0.CO;2-5. 
  • B. E. Hirsch; S. Lee; B. Qiao; C. H. Chen; K. P. McDonald; S. L. Tait; A. H. Flood. Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications. 2014, s. 9827–9830. Dostupné online. DOI 10.1039/C4CC03725A. PMID 25080328. 
  • E. Buhleier; W. Wehner; F. Vögtle. "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis. 1978, s. 155–158. DOI 10.1055/s-1978-24702. 
  • A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal. 1985, s. 117–132. DOI 10.1295/polymj.17.117. 
  • G. R. Newkome; Z. Yao; G. R. Baker; V. K. Gupta. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry. 1985, s. 2003–2004. DOI 10.1295/polymj.17.117. 
  • C. J. Hawker; J. M. Fréchet. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society. 1990, s. 7638–7647. DOI 10.1021/ja00177a027. 
  • Frank Morgenroth; Erik Reuther; Klaus Müllen. Polyphenylene Dendrimers: From Three-Dimensional to Two-Dimensional Structures. Angewandte Chemie International Edition in English. 1997, s. 631–634. DOI 10.1002/anie.199706311. 
  • G. Franc; A. K. Kakkar. Diels-Alder "click" chemistry in designing dendritic macromolecules. Chemistry. 2009, s. 5630–5639. DOI 10.1002/chem.200900252. PMID 19418515. 
  • K. L. Killops; L. M. Campos; C. J. Hawker. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. Journal of the American Chemical Society. 2008, s. 5062–5064. DOI 10.1021/ja8006325. PMID 18355008. 
  • G. Franc; A. Kakkar. Dendrimer design using Cu(I)-catalyzed alkyne-azide "click-chemistry". Chemical Communications. 2008, s. 5267–5276. DOI 10.1039/b809870k. PMID 18985184. 
  • P. Antoni; Y. Hed; A. Nordberg; D. Nyström; H. von Holst; A. Hult; M. Malkoch. Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angewandte Chemie. 2009, s. 2126–2130. DOI 10.1002/anie.200804987. 
  • J. R. McElhanon; D. V. McGrath. Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry. 2000, s. 3525–3529. DOI 10.1021/jo000207a. PMID 10843641. 
  • C. O. Liang; J. M. Fréchet. Incorporation of Functional Guest Molecules into an Internally Functionalizable Dendrimer through Olefin Metathesis. Macromolecules. 2005, s. 6276–6284. DOI 10.1021/ma050818a. Bibcode 2005MaMol..38.6276L. 
  • S. Hecht; J. M. Fréchet. Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie. 2001, s. 74–91. DOI 10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C. PMID 11169692. 
  • M. Fischer; F. Vögtle. Dendrimers: From Design to Application—A Progress Report. Angewandte Chemie International Edition. 1999, s. 884–905. DOI 10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K. 
  • L. S. Kaanumalle; R. Ramesh; V. S. Murthy Maddipatla; J. Nithyanandhan; N. Jayaraman; V. Ramamurthy. Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. The Journal of Organic Chemistry. 2005, s. 5062–5069. DOI 10.1021/jo0503254. PMID 15960506. 
  • Donald A. Tomalia; Adel M. Naylor; William A. Goddard. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English. 1990, s. 138–175. DOI 10.1002/anie.199001381. 
  • J. M. Fréchet. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994, s. 1710–1715. DOI 10.1126/science.8134834. PMID 8134834. Bibcode 1994Sci...263.1710F. 
  • M. Liu; K. Kono; J. M. Fréchet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release. 2000, s. 121–131. DOI 10.1016/s0168-3659(99)00245-x. PMID 10699276. 
  • George R. Newkome; Zhongqi Yao; Gregory R. Baker; Vinod K. Gupta. Micelles Part 1. Cascade molecules: a new approach to micelles, A-arborol. The Journal of Organic Chemistry. 1985, s. 155–158. DOI 10.1021/jo00211a052. 
  • S. Stevelmens; J. C. Hest; J. F. Jansen; D. A. Boxtel; E. W. Miejer. Synthesis, characterisation and guest-host properties of inverted unimolecular micelles. Journal of the American Chemical Society. 1996, s. 7398–7399. Dostupné online. DOI 10.1021/ja954207h. 
  • U. Gupta; H. B. Agashe; A. Asthana; N. K. Jain. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006, s. 649–658. DOI 10.1021/bm050802s. PMID 16529394. 
  • T. P. Thomas; I. J. Majoros; A. Kotlyar; J. F. Kukowska-Latallo; A. Bielinska; A. Myc; J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. Journal of Medicinal Chemistry. 2005, s. 3729–3735. DOI 10.1021/jm040187v. PMID 15916424. 
  • A. Asthana; A. S. Chauhan; P. V. Diwan; N. K. Jain. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech. 2005, s. E536-542. DOI 10.1208/pt060367. PMID 16354015. 
  • D. Bhadra; S. Bhadra; S. Jain; N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. International Journal of Pharmaceutics. 2003, s. 111–124. DOI 10.1016/s0378-5173(03)00132-7. PMID 12711167. 
  • A. J. Khopade; F. Caruso; P. Tripathi; S. Nagaich; N. K. Jain. Effect of dendrimer on entrapment and release of bioactive from liposomes. International Journal of Pharmaceutics. 2002, s. 157–162. DOI 10.1016/S0378-5173(01)00901-2. 
  • R. N. Prajapati; R. K. Tekade; U. Gupta; V. Gajbhiye; N. K. Jain. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Molecular Pharmaceutics. 2009, s. 940–950. DOI 10.1021/mp8002489. PMID 19231841. 
  • Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. Journal of Controlled Release. 2003, s. 335–343. DOI 10.1016/s0168-3659(03)00200-1. PMID 12880700. 
  • Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research. 2005, s. 5317–5324. DOI 10.1016/s0168-3659(03)00200-1. PMID 12880700. 
  • Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research. 2002, s. 1310–1316. Dostupné online. DOI 10.1023/a:1020398624602. PMID 12403067. 
  • Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrimers: Dendrimers Specifically Designed for Pharmaceutical Applications. ChemMedChem. 2016, s. 1583–1586. DOI 10.1002/cmdc.201600270. PMID 27390296. 
  • Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research. 2006, s. 11 913 – 11 921. DOI 10.1158/0008-5472.CAN-06-2066. PMID 17178889. 
  • R. K. Tekade; T. Dutta; V. Gajbhiye; N. K. Jain. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation. 2009, s. 287–296. DOI 10.1080/02652040802312572. PMID 18791906. 
  • Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. DOI 10.1016/j.xphs.2018.05.013. PMID 29852134. 
  • S. da Silva Santos; E. Igne Ferreira; J. Giarolla. Dendrimer Prodrugs. Molecules. 2016, s. 686. DOI 10.3390/molecules21060686. PMID 27258239. 
  • L. M. Kaminskas; B. J. Boyd; C. J. Porter. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine. 2011, s. 1063–1084. DOI 10.2217/nnm.11.67. PMID 21955077. 
  • D. Luong; P. Kesharwani; R. Deshmukh; M. C. Mohd Amin; U. Gupta; K. Greish; A. K. Iyer. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia. 2016, s. 14–29. DOI 10.1016/j.actbio.2016.07.015. PMID 27422195. 
  • P. Singh; U. Gupta; A. Asthana; N. K. Jain. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chemistry. 2008, s. 2239–2252. DOI 10.1021/bc800125u. PMID 18950215. 
  • I. J. Majoros; C. R. Williams; A. Becker; J. R. Baker. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2009, s. 502–510. DOI 10.1002/wnan.37. PMID 20049813. 
  • G. Wu; R. F. Barth; W. Yang; M. Chatterjee; W. Tjarks; M. J. Ciesielski; R. A. Fenstermaker. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjugate Chemistry. 2004, s. 185–194. DOI 10.1021/bc0341674. PMID 14733599. 
  • Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN 2366-3987. DOI 10.1002/adtp.201900132. S2CID 203135854. 
  • A. Sharma; J. E. Porterfield; E. Smith; R. Sharma; S. Kannan; R. M. Kannan. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. Journal of Controlled Release. 2018, s. 175–189. DOI 10.1016/j.jconrel.2018.06.003. PMID 29883694. 
  • N. Csaba; M. Garcia-Fuentes; M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert Opinion on Drug Delivery. 2006, s. 463–478. DOI 10.1517/17425247.3.4.463. PMID 16822222. 
  • G. Thiagarajan; S. Sadekar; K. Greish; A. Ray; H. Ghandehari. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics. 2013, s. 988–998. DOI 10.1021/mp300436c. PMID 23286733. 
  • C. Dufès; I. F. Uchegbu; A. G. Schätzlein. Dendrimers in gene delivery. Advanced Drug Delivery Reviews. 2005, s. 2177–2202. Dostupné online. DOI 10.1016/j.addr.2005.09.017. PMID 16310284. 
  • C. Dufès; W. N. Keith; A. Bilsland; I. Proutski; I. F. Uchegbu; A. G. Schätzlein. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Research. 2005, s. 8079–8084. DOI 10.1158/0008-5472.CAN-04-4402. PMID 16166279. 
  • Y. Cheng; N. Man; T. Xu; R. Fu; X. Wang; X. Wang; L. Wen. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences. 2007, s. 595–602. DOI 10.1002/jps.20745. PMID 17094130. 
  • T. F. Vandamme; L. Brobeck. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 2005, s. 23–38. DOI 10.1016/j.jconrel.2004.09.015. PMID 15653131. 
  • Q. Xu; S. P. Kambhampati; R. M. Kannan. Nanotechnology approaches for ocular drug delivery. Middle East African Journal of Ophthalmology. 2013, s. 26–37. Dostupné online. DOI 10.4103/0974-9233.106384. PMID 23580849. 
  • Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 2010, s. 1317–1329. DOI 10.2217/nnm.10.89. PMID 21128716. 
  • Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine. 2012, s. 130–146. DOI 10.1126/scitranslmed.3003162. PMID 22517883. 
  • Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano. 2014, s. 2134–2147. DOI 10.1021/nn404872e. PMID 24499315. 
  • G. Kannan € autor2 = S. P. Kambhampati; S. R. Kudchadkar. Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury. Journal of Controlled Release. 2017, s. 192–199. DOI 10.1016/j.jconrel.2017.03.032. PMID 28336376. 
  • Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. Journal of Neuroinflammation. 2017, s. 252. DOI 10.1186/s12974-017-1004-5. PMID 29258545. 
  • H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine. 2008, s. 1334–1342. DOI 10.1002/jgm.1258. PMID 18816481. 
  • H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. Journal of Controlled Release. 2007, s. 181–188. DOI 10.1016/j.jconrel.2007.08.031. PMID 17900738. 
  • T. Dutta; M. Garg; N. K. Jain. Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Journal of Controlled Release. 2008, s. 3389–3394. DOI 10.1016/j.vaccine.2008.04.058. PMID 10.1016/j.vaccine.2008.04.05. 
  • E. G. Fernandes; N. C.; A. A. de Queiroz; F. E. Guimaraes; V. Zucolotto. Immobilization of Poly(propylene imine) Dendrimer/Nickel Phthalocyanine as Nanostructured Multilayer Films To Be Used as Gate Membranes for SEGFET pH Sensors. Journal of Physical Chemistry C. 2010, s. 6478–6483. DOI 10.1021/jp9106052. 
  • I. Grabchev; D. Staneva; J. M. Chovelon. Photophysical investigations on the sensor potential of novel, poly(propylenamine) dendrimers modified with 1,8-naphthalimide units. Dyes and Pigments. 2010, s. 189–193. DOI 10.1016/j.dyepig.2009.10.023. 
  • R. W. Scott; O. M. Wilson; R. M. Crooks. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. The Journal of Physical Chemistry B. 2005, s. 692–704. DOI 10.1021/jp0469665. PMID 16866429. 
  • L. J. Twyman; Y. Ge. Porphyrin cored hyperbranched polymers as heme protein models. Chemical Communications. 2006, s. 1658–1660. DOI 10.1039/b600831n. PMID 16583011. 
  • L. J. Twyman; A. Ellis; P. J. Gittins. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chemical Communications. 2012, s. 154–156. DOI 10.1039/c1cc14396d. PMID 22039580. 

glycosyn.com

glycofinechem.glycosyn.com

  • GLYCOSYN. PEE-G Dendrimers [online]. Dostupné online. 

harvard.edu

adsabs.harvard.edu

labonline.com.au

  • Dendrimer technology licensed for herbicide [online]. www.labonline.com.au [cit. 2016-09-25]. Dostupné online. 

nih.gov

ncbi.nlm.nih.gov

  • D. Astruc; E. Boisselier; C. Ornelas. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Reviews. 2010, s. 1857–1959. DOI 10.1021/cr900327d. PMID 20356105. 
  • B. K. Nanjwade; H. M. Bechra; G. K. Derkar; F. V. Manvi; V. K. Nanjwade. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences. 2009, s. 185–196. DOI 10.1016/j.ejps.2009.07.008. PMID 19646528. 
  • B. E. Hirsch; S. Lee; B. Qiao; C. H. Chen; K. P. McDonald; S. L. Tait; A. H. Flood. Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications. 2014, s. 9827–9830. Dostupné online. DOI 10.1039/C4CC03725A. PMID 25080328. 
  • G. Franc; A. K. Kakkar. Diels-Alder "click" chemistry in designing dendritic macromolecules. Chemistry. 2009, s. 5630–5639. DOI 10.1002/chem.200900252. PMID 19418515. 
  • K. L. Killops; L. M. Campos; C. J. Hawker. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. Journal of the American Chemical Society. 2008, s. 5062–5064. DOI 10.1021/ja8006325. PMID 18355008. 
  • K. Noda; Y. Minatogawa; T. Higuchi. Effects of hippocampal neurotoxicant, trimethyltin, on corticosterone response to a swim stress and glucocorticoid binding capacity in the hippocampus in rats. The Japanese Journal of Psychiatry and Neurology. 1991, s. 107–108. PMID 1753450. 
  • J. P. Machaiah. Changes in macrophage membrane proteins in relation to protein deficiency in rats. Indian Journal of Experimental Biology. 1991, s. 463–467. PMID 1916945. 
  • G. Franc; A. Kakkar. Dendrimer design using Cu(I)-catalyzed alkyne-azide "click-chemistry". Chemical Communications. 2008, s. 5267–5276. DOI 10.1039/b809870k. PMID 18985184. 
  • J. R. McElhanon; D. V. McGrath. Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry. 2000, s. 3525–3529. DOI 10.1021/jo000207a. PMID 10843641. 
  • S. Hecht; J. M. Fréchet. Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie. 2001, s. 74–91. DOI 10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C. PMID 11169692. 
  • L. S. Kaanumalle; R. Ramesh; V. S. Murthy Maddipatla; J. Nithyanandhan; N. Jayaraman; V. Ramamurthy. Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. The Journal of Organic Chemistry. 2005, s. 5062–5069. DOI 10.1021/jo0503254. PMID 15960506. 
  • J. M. Fréchet. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994, s. 1710–1715. DOI 10.1126/science.8134834. PMID 8134834. Bibcode 1994Sci...263.1710F. 
  • M. Liu; K. Kono; J. M. Fréchet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release. 2000, s. 121–131. DOI 10.1016/s0168-3659(99)00245-x. PMID 10699276. 
  • U. Gupta; H. B. Agashe; A. Asthana; N. K. Jain. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006, s. 649–658. DOI 10.1021/bm050802s. PMID 16529394. 
  • T. P. Thomas; I. J. Majoros; A. Kotlyar; J. F. Kukowska-Latallo; A. Bielinska; A. Myc; J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. Journal of Medicinal Chemistry. 2005, s. 3729–3735. DOI 10.1021/jm040187v. PMID 15916424. 
  • D. Bhadra; S. Bhadra; P. Jain; N. K. Jain. Pegnology: a review of PEG-ylated systems. Die Pharmazie. 2002, s. 5–29. PMID 11836932. 
  • A. Asthana; A. S. Chauhan; P. V. Diwan; N. K. Jain. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech. 2005, s. E536-542. DOI 10.1208/pt060367. PMID 16354015. 
  • D. Bhadra; S. Bhadra; S. Jain; N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. International Journal of Pharmaceutics. 2003, s. 111–124. DOI 10.1016/s0378-5173(03)00132-7. PMID 12711167. 
  • R. N. Prajapati; R. K. Tekade; U. Gupta; V. Gajbhiye; N. K. Jain. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Molecular Pharmaceutics. 2009, s. 940–950. DOI 10.1021/mp8002489. PMID 19231841. 
  • Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. Journal of Controlled Release. 2003, s. 335–343. DOI 10.1016/s0168-3659(03)00200-1. PMID 12880700. 
  • Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research. 2005, s. 5317–5324. DOI 10.1016/s0168-3659(03)00200-1. PMID 12880700. 
  • Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research. 2002, s. 1310–1316. Dostupné online. DOI 10.1023/a:1020398624602. PMID 12403067. 
  • Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrimers: Dendrimers Specifically Designed for Pharmaceutical Applications. ChemMedChem. 2016, s. 1583–1586. DOI 10.1002/cmdc.201600270. PMID 27390296. 
  • Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research. 2006, s. 11 913 – 11 921. DOI 10.1158/0008-5472.CAN-06-2066. PMID 17178889. 
  • R. K. Tekade; T. Dutta; V. Gajbhiye; N. K. Jain. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation. 2009, s. 287–296. DOI 10.1080/02652040802312572. PMID 18791906. 
  • Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. DOI 10.1016/j.xphs.2018.05.013. PMID 29852134. 
  • S. da Silva Santos; E. Igne Ferreira; J. Giarolla. Dendrimer Prodrugs. Molecules. 2016, s. 686. DOI 10.3390/molecules21060686. PMID 27258239. 
  • L. M. Kaminskas; B. J. Boyd; C. J. Porter. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine. 2011, s. 1063–1084. DOI 10.2217/nnm.11.67. PMID 21955077. 
  • D. Luong; P. Kesharwani; R. Deshmukh; M. C. Mohd Amin; U. Gupta; K. Greish; A. K. Iyer. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia. 2016, s. 14–29. DOI 10.1016/j.actbio.2016.07.015. PMID 27422195. 
  • P. Singh; U. Gupta; A. Asthana; N. K. Jain. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chemistry. 2008, s. 2239–2252. DOI 10.1021/bc800125u. PMID 18950215. 
  • I. J. Majoros; C. R. Williams; A. Becker; J. R. Baker. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2009, s. 502–510. DOI 10.1002/wnan.37. PMID 20049813. 
  • G. Wu; R. F. Barth; W. Yang; M. Chatterjee; W. Tjarks; M. J. Ciesielski; R. A. Fenstermaker. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjugate Chemistry. 2004, s. 185–194. DOI 10.1021/bc0341674. PMID 14733599. 
  • A. Sharma; J. E. Porterfield; E. Smith; R. Sharma; S. Kannan; R. M. Kannan. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. Journal of Controlled Release. 2018, s. 175–189. DOI 10.1016/j.jconrel.2018.06.003. PMID 29883694. 
  • N. Csaba; M. Garcia-Fuentes; M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert Opinion on Drug Delivery. 2006, s. 463–478. DOI 10.1517/17425247.3.4.463. PMID 16822222. 
  • G. Thiagarajan; S. Sadekar; K. Greish; A. Ray; H. Ghandehari. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics. 2013, s. 988–998. DOI 10.1021/mp300436c. PMID 23286733. 
  • C. Dufès; I. F. Uchegbu; A. G. Schätzlein. Dendrimers in gene delivery. Advanced Drug Delivery Reviews. 2005, s. 2177–2202. Dostupné online. DOI 10.1016/j.addr.2005.09.017. PMID 16310284. 
  • C. Dufès; W. N. Keith; A. Bilsland; I. Proutski; I. F. Uchegbu; A. G. Schätzlein. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Research. 2005, s. 8079–8084. DOI 10.1158/0008-5472.CAN-04-4402. PMID 16166279. 
  • Y. Cheng; N. Man; T. Xu; R. Fu; X. Wang; X. Wang; L. Wen. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences. 2007, s. 595–602. DOI 10.1002/jps.20745. PMID 17094130. 
  • T. F. Vandamme; L. Brobeck. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 2005, s. 23–38. DOI 10.1016/j.jconrel.2004.09.015. PMID 15653131. 
  • Q. Xu; S. P. Kambhampati; R. M. Kannan. Nanotechnology approaches for ocular drug delivery. Middle East African Journal of Ophthalmology. 2013, s. 26–37. Dostupné online. DOI 10.4103/0974-9233.106384. PMID 23580849. 
  • Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 2010, s. 1317–1329. DOI 10.2217/nnm.10.89. PMID 21128716. 
  • Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine. 2012, s. 130–146. DOI 10.1126/scitranslmed.3003162. PMID 22517883. 
  • Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano. 2014, s. 2134–2147. DOI 10.1021/nn404872e. PMID 24499315. 
  • G. Kannan € autor2 = S. P. Kambhampati; S. R. Kudchadkar. Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury. Journal of Controlled Release. 2017, s. 192–199. DOI 10.1016/j.jconrel.2017.03.032. PMID 28336376. 
  • Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. Journal of Neuroinflammation. 2017, s. 252. DOI 10.1186/s12974-017-1004-5. PMID 29258545. 
  • H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine. 2008, s. 1334–1342. DOI 10.1002/jgm.1258. PMID 18816481. 
  • H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. Journal of Controlled Release. 2007, s. 181–188. DOI 10.1016/j.jconrel.2007.08.031. PMID 17900738. 
  • T. Dutta; M. Garg; N. K. Jain. Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Journal of Controlled Release. 2008, s. 3389–3394. DOI 10.1016/j.vaccine.2008.04.058. PMID 10.1016/j.vaccine.2008.04.05. 
  • R. W. Scott; O. M. Wilson; R. M. Crooks. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. The Journal of Physical Chemistry B. 2005, s. 692–704. DOI 10.1021/jp0469665. PMID 16866429. 
  • L. J. Twyman; Y. Ge. Porphyrin cored hyperbranched polymers as heme protein models. Chemical Communications. 2006, s. 1658–1660. DOI 10.1039/b600831n. PMID 16583011. 
  • L. J. Twyman; A. Ellis; P. J. Gittins. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chemical Communications. 2012, s. 154–156. DOI 10.1039/c1cc14396d. PMID 22039580. 

semanticscholar.org

api.semanticscholar.org

  • Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN 2366-3987. DOI 10.1002/adtp.201900132. S2CID 203135854. 

sps.aero

  • P. Holister; T. Harper. Dendrimers: Technology White Papers [online]. Cientifica, 2003 [cit. 2010-03-17]. Dostupné v archivu pořízeném z originálu dne 2011-07-06. 

strath.ac.uk

strathprints.strath.ac.uk

thefreelibrary.com

  • Treelike molecules branch out – chemist Donald A. Tomalia synthesized first dendrimer molecule – Chemistry – Brief Article. Science News. 1996. Dostupné online. 

themarketherald.com.au

  • Starpharma (ASX:SPL) compound shows activity against coronavirus - The Market Herald [online]. The Market Herald, 2020-04-16 [cit. 2020-04-30]. Dostupné online. [nedostupný zdroj]

tue.nl

research.tue.nl

  • S. Stevelmens; J. C. Hest; J. F. Jansen; D. A. Boxtel; E. W. Miejer. Synthesis, characterisation and guest-host properties of inverted unimolecular micelles. Journal of the American Chemical Society. 1996, s. 7398–7399. Dostupné online. DOI 10.1021/ja954207h. 

umich.edu

deepblue.lib.umich.edu

uq.edu.au

espace.library.uq.edu.au

  • Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. DOI 10.1016/j.xphs.2018.05.013. PMID 29852134. 

web.archive.org

  • P. Holister; T. Harper. Dendrimers: Technology White Papers [online]. Cientifica, 2003 [cit. 2010-03-17]. Dostupné v archivu pořízeném z originálu dne 2011-07-06. 

worldcat.org

  • Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN 2366-3987. DOI 10.1002/adtp.201900132. S2CID 203135854. 

zenodo.org