D. Astruc; E. Boisselier; C. Ornelas. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Reviews. 2010, s. 1857–1959. doi:10.1021/cr900327d. PMID20356105.
B. K. Nanjwade; H. M. Bechra; G. K. Derkar; F. V. Manvi; V. K. Nanjwade. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences. 2009, s. 185–196. doi:10.1016/j.ejps.2009.07.008. PMID19646528.
B. E. Hirsch; S. Lee; B. Qiao; C. H. Chen; K. P. McDonald; S. L. Tait; A. H. Flood. Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications. 2014, s. 9827–9830. Dostupné online. doi:10.1039/C4CC03725A. PMID25080328.
E. Buhleier; W. Wehner; F. Vögtle. "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis. 1978, s. 155–158. doi:10.1055/s-1978-24702.
A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal. 1985, s. 117–132. doi:10.1295/polymj.17.117.
Frank Morgenroth; Erik Reuther; Klaus Müllen. Polyphenylene Dendrimers: From Three-Dimensional to Two-Dimensional Structures. Angewandte Chemie International Edition in English. 1997, s. 631–634. doi:10.1002/anie.199706311.
G. Franc; A. K. Kakkar. Diels-Alder "click" chemistry in designing dendritic macromolecules. Chemistry. 2009, s. 5630–5639. doi:10.1002/chem.200900252. PMID19418515.
K. L. Killops; L. M. Campos; C. J. Hawker. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. Journal of the American Chemical Society. 2008, s. 5062–5064. doi:10.1021/ja8006325. PMID18355008.
G. Franc; A. Kakkar. Dendrimer design using Cu(I)-catalyzed alkyne-azide "click-chemistry". Chemical Communications. 2008, s. 5267–5276. doi:10.1039/b809870k. PMID18985184.
P. Antoni; Y. Hed; A. Nordberg; D. Nyström; H. von Holst; A. Hult; M. Malkoch. Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angewandte Chemie. 2009, s. 2126–2130. doi:10.1002/anie.200804987.
J. R. McElhanon; D. V. McGrath. Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry. 2000, s. 3525–3529. doi:10.1021/jo000207a. PMID10843641.
L. S. Kaanumalle; R. Ramesh; V. S. Murthy Maddipatla; J. Nithyanandhan; N. Jayaraman; V. Ramamurthy. Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. The Journal of Organic Chemistry. 2005, s. 5062–5069. doi:10.1021/jo0503254. PMID15960506.
Donald A. Tomalia; Adel M. Naylor; William A. Goddard. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English. 1990, s. 138–175. doi:10.1002/anie.199001381.
M. Liu; K. Kono; J. M. Fréchet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release. 2000, s. 121–131. doi:10.1016/s0168-3659(99)00245-x. PMID10699276.
George R. Newkome; Zhongqi Yao; Gregory R. Baker; Vinod K. Gupta. Micelles Part 1. Cascade molecules: a new approach to micelles, A-arborol. The Journal of Organic Chemistry. 1985, s. 155–158. doi:10.1021/jo00211a052.
S. Stevelmens; J. C. Hest; J. F. Jansen; D. A. Boxtel; E. W. Miejer. Synthesis, characterisation and guest-host properties of inverted unimolecular micelles. Journal of the American Chemical Society. 1996, s. 7398–7399. Dostupné online. doi:10.1021/ja954207h.
U. Gupta; H. B. Agashe; A. Asthana; N. K. Jain. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006, s. 649–658. doi:10.1021/bm050802s. PMID16529394.
T. P. Thomas; I. J. Majoros; A. Kotlyar; J. F. Kukowska-Latallo; A. Bielinska; A. Myc; J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. Journal of Medicinal Chemistry. 2005, s. 3729–3735. doi:10.1021/jm040187v. PMID15916424.
A. Asthana; A. S. Chauhan; P. V. Diwan; N. K. Jain. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech. 2005, s. E536-542. doi:10.1208/pt060367. PMID16354015.
D. Bhadra; S. Bhadra; S. Jain; N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. International Journal of Pharmaceutics. 2003, s. 111–124. doi:10.1016/s0378-5173(03)00132-7. PMID12711167.
A. J. Khopade; F. Caruso; P. Tripathi; S. Nagaich; N. K. Jain. Effect of dendrimer on entrapment and release of bioactive from liposomes. International Journal of Pharmaceutics. 2002, s. 157–162. doi:10.1016/S0378-5173(01)00901-2.
R. N. Prajapati; R. K. Tekade; U. Gupta; V. Gajbhiye; N. K. Jain. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Molecular Pharmaceutics. 2009, s. 940–950. doi:10.1021/mp8002489. PMID19231841.
Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. Journal of Controlled Release. 2003, s. 335–343. doi:10.1016/s0168-3659(03)00200-1. PMID12880700.
Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research. 2005, s. 5317–5324. doi:10.1016/s0168-3659(03)00200-1. PMID12880700.
Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research. 2002, s. 1310–1316. Dostupné online. doi:10.1023/a:1020398624602. PMID12403067.
Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research. 2006, s. 11 913 – 11 921. doi:10.1158/0008-5472.CAN-06-2066. PMID17178889.
R. K. Tekade; T. Dutta; V. Gajbhiye; N. K. Jain. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation. 2009, s. 287–296. doi:10.1080/02652040802312572. PMID18791906.
Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. doi:10.1016/j.xphs.2018.05.013. PMID29852134.
L. M. Kaminskas; B. J. Boyd; C. J. Porter. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine. 2011, s. 1063–1084. doi:10.2217/nnm.11.67. PMID21955077.
D. Luong; P. Kesharwani; R. Deshmukh; M. C. Mohd Amin; U. Gupta; K. Greish; A. K. Iyer. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia. 2016, s. 14–29. doi:10.1016/j.actbio.2016.07.015. PMID27422195.
P. Singh; U. Gupta; A. Asthana; N. K. Jain. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chemistry. 2008, s. 2239–2252. doi:10.1021/bc800125u. PMID18950215.
I. J. Majoros; C. R. Williams; A. Becker; J. R. Baker. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2009, s. 502–510. doi:10.1002/wnan.37. PMID20049813.
G. Wu; R. F. Barth; W. Yang; M. Chatterjee; W. Tjarks; M. J. Ciesielski; R. A. Fenstermaker. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjugate Chemistry. 2004, s. 185–194. doi:10.1021/bc0341674. PMID14733599.
Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN2366-3987. doi:10.1002/adtp.201900132. S2CID203135854.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
A. Sharma; J. E. Porterfield; E. Smith; R. Sharma; S. Kannan; R. M. Kannan. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. Journal of Controlled Release. 2018, s. 175–189. doi:10.1016/j.jconrel.2018.06.003. PMID29883694.
N. Csaba; M. Garcia-Fuentes; M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert Opinion on Drug Delivery. 2006, s. 463–478. doi:10.1517/17425247.3.4.463. PMID16822222.
G. Thiagarajan; S. Sadekar; K. Greish; A. Ray; H. Ghandehari. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics. 2013, s. 988–998. doi:10.1021/mp300436c. PMID23286733.
C. Dufès; W. N. Keith; A. Bilsland; I. Proutski; I. F. Uchegbu; A. G. Schätzlein. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Research. 2005, s. 8079–8084. doi:10.1158/0008-5472.CAN-04-4402. PMID16166279.
Y. Cheng; N. Man; T. Xu; R. Fu; X. Wang; X. Wang; L. Wen. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences. 2007, s. 595–602. doi:10.1002/jps.20745. PMID17094130.
T. F. Vandamme; L. Brobeck. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 2005, s. 23–38. doi:10.1016/j.jconrel.2004.09.015. PMID15653131.
Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 2010, s. 1317–1329. doi:10.2217/nnm.10.89. PMID21128716.
Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine. 2012, s. 130–146. doi:10.1126/scitranslmed.3003162. PMID22517883.
Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano. 2014, s. 2134–2147. doi:10.1021/nn404872e. PMID24499315.
G. Kannan € autor2 = S. P. Kambhampati; S. R. Kudchadkar. Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury. Journal of Controlled Release. 2017, s. 192–199. doi:10.1016/j.jconrel.2017.03.032. PMID28336376.
Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. Journal of Neuroinflammation. 2017, s. 252. doi:10.1186/s12974-017-1004-5. PMID29258545.
H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine. 2008, s. 1334–1342. doi:10.1002/jgm.1258. PMID18816481.
H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. Journal of Controlled Release. 2007, s. 181–188. doi:10.1016/j.jconrel.2007.08.031. PMID17900738.
E. G. Fernandes; N. C.; A. A. de Queiroz; F. E. Guimaraes; V. Zucolotto. Immobilization of Poly(propylene imine) Dendrimer/Nickel Phthalocyanine as Nanostructured Multilayer Films To Be Used as Gate Membranes for SEGFET pH Sensors. Journal of Physical Chemistry C. 2010, s. 6478–6483. doi:10.1021/jp9106052.
I. Grabchev; D. Staneva; J. M. Chovelon. Photophysical investigations on the sensor potential of novel, poly(propylenamine) dendrimers modified with 1,8-naphthalimide units. Dyes and Pigments. 2010, s. 189–193. doi:10.1016/j.dyepig.2009.10.023.
L. J. Twyman; A. Ellis; P. J. Gittins. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chemical Communications. 2012, s. 154–156. doi:10.1039/c1cc14396d. PMID22039580.
glycosyn.com
glycofinechem.glycosyn.com
GLYCOSYN. PEE-G Dendrimers [online]. Dostupné online.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
D. Astruc; E. Boisselier; C. Ornelas. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Reviews. 2010, s. 1857–1959. doi:10.1021/cr900327d. PMID20356105.
B. K. Nanjwade; H. M. Bechra; G. K. Derkar; F. V. Manvi; V. K. Nanjwade. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences. 2009, s. 185–196. doi:10.1016/j.ejps.2009.07.008. PMID19646528.
B. E. Hirsch; S. Lee; B. Qiao; C. H. Chen; K. P. McDonald; S. L. Tait; A. H. Flood. Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications. 2014, s. 9827–9830. Dostupné online. doi:10.1039/C4CC03725A. PMID25080328.
G. Franc; A. K. Kakkar. Diels-Alder "click" chemistry in designing dendritic macromolecules. Chemistry. 2009, s. 5630–5639. doi:10.1002/chem.200900252. PMID19418515.
K. L. Killops; L. M. Campos; C. J. Hawker. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. Journal of the American Chemical Society. 2008, s. 5062–5064. doi:10.1021/ja8006325. PMID18355008.
K. Noda; Y. Minatogawa; T. Higuchi. Effects of hippocampal neurotoxicant, trimethyltin, on corticosterone response to a swim stress and glucocorticoid binding capacity in the hippocampus in rats. The Japanese Journal of Psychiatry and Neurology. 1991, s. 107–108. PMID1753450.
J. P. Machaiah. Changes in macrophage membrane proteins in relation to protein deficiency in rats. Indian Journal of Experimental Biology. 1991, s. 463–467. PMID1916945.
G. Franc; A. Kakkar. Dendrimer design using Cu(I)-catalyzed alkyne-azide "click-chemistry". Chemical Communications. 2008, s. 5267–5276. doi:10.1039/b809870k. PMID18985184.
J. R. McElhanon; D. V. McGrath. Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry. 2000, s. 3525–3529. doi:10.1021/jo000207a. PMID10843641.
L. S. Kaanumalle; R. Ramesh; V. S. Murthy Maddipatla; J. Nithyanandhan; N. Jayaraman; V. Ramamurthy. Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. The Journal of Organic Chemistry. 2005, s. 5062–5069. doi:10.1021/jo0503254. PMID15960506.
M. Liu; K. Kono; J. M. Fréchet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release. 2000, s. 121–131. doi:10.1016/s0168-3659(99)00245-x. PMID10699276.
U. Gupta; H. B. Agashe; A. Asthana; N. K. Jain. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006, s. 649–658. doi:10.1021/bm050802s. PMID16529394.
T. P. Thomas; I. J. Majoros; A. Kotlyar; J. F. Kukowska-Latallo; A. Bielinska; A. Myc; J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. Journal of Medicinal Chemistry. 2005, s. 3729–3735. doi:10.1021/jm040187v. PMID15916424.
D. Bhadra; S. Bhadra; P. Jain; N. K. Jain. Pegnology: a review of PEG-ylated systems. Die Pharmazie. 2002, s. 5–29. PMID11836932.
A. Asthana; A. S. Chauhan; P. V. Diwan; N. K. Jain. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech. 2005, s. E536-542. doi:10.1208/pt060367. PMID16354015.
D. Bhadra; S. Bhadra; S. Jain; N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. International Journal of Pharmaceutics. 2003, s. 111–124. doi:10.1016/s0378-5173(03)00132-7. PMID12711167.
R. N. Prajapati; R. K. Tekade; U. Gupta; V. Gajbhiye; N. K. Jain. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Molecular Pharmaceutics. 2009, s. 940–950. doi:10.1021/mp8002489. PMID19231841.
Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. Journal of Controlled Release. 2003, s. 335–343. doi:10.1016/s0168-3659(03)00200-1. PMID12880700.
Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research. 2005, s. 5317–5324. doi:10.1016/s0168-3659(03)00200-1. PMID12880700.
Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research. 2002, s. 1310–1316. Dostupné online. doi:10.1023/a:1020398624602. PMID12403067.
Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research. 2006, s. 11 913 – 11 921. doi:10.1158/0008-5472.CAN-06-2066. PMID17178889.
R. K. Tekade; T. Dutta; V. Gajbhiye; N. K. Jain. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation. 2009, s. 287–296. doi:10.1080/02652040802312572. PMID18791906.
Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. doi:10.1016/j.xphs.2018.05.013. PMID29852134.
L. M. Kaminskas; B. J. Boyd; C. J. Porter. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine. 2011, s. 1063–1084. doi:10.2217/nnm.11.67. PMID21955077.
D. Luong; P. Kesharwani; R. Deshmukh; M. C. Mohd Amin; U. Gupta; K. Greish; A. K. Iyer. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia. 2016, s. 14–29. doi:10.1016/j.actbio.2016.07.015. PMID27422195.
P. Singh; U. Gupta; A. Asthana; N. K. Jain. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chemistry. 2008, s. 2239–2252. doi:10.1021/bc800125u. PMID18950215.
I. J. Majoros; C. R. Williams; A. Becker; J. R. Baker. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2009, s. 502–510. doi:10.1002/wnan.37. PMID20049813.
G. Wu; R. F. Barth; W. Yang; M. Chatterjee; W. Tjarks; M. J. Ciesielski; R. A. Fenstermaker. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjugate Chemistry. 2004, s. 185–194. doi:10.1021/bc0341674. PMID14733599.
A. Sharma; J. E. Porterfield; E. Smith; R. Sharma; S. Kannan; R. M. Kannan. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. Journal of Controlled Release. 2018, s. 175–189. doi:10.1016/j.jconrel.2018.06.003. PMID29883694.
N. Csaba; M. Garcia-Fuentes; M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert Opinion on Drug Delivery. 2006, s. 463–478. doi:10.1517/17425247.3.4.463. PMID16822222.
G. Thiagarajan; S. Sadekar; K. Greish; A. Ray; H. Ghandehari. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics. 2013, s. 988–998. doi:10.1021/mp300436c. PMID23286733.
C. Dufès; W. N. Keith; A. Bilsland; I. Proutski; I. F. Uchegbu; A. G. Schätzlein. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Research. 2005, s. 8079–8084. doi:10.1158/0008-5472.CAN-04-4402. PMID16166279.
Y. Cheng; N. Man; T. Xu; R. Fu; X. Wang; X. Wang; L. Wen. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences. 2007, s. 595–602. doi:10.1002/jps.20745. PMID17094130.
T. F. Vandamme; L. Brobeck. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 2005, s. 23–38. doi:10.1016/j.jconrel.2004.09.015. PMID15653131.
Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 2010, s. 1317–1329. doi:10.2217/nnm.10.89. PMID21128716.
Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine. 2012, s. 130–146. doi:10.1126/scitranslmed.3003162. PMID22517883.
Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano. 2014, s. 2134–2147. doi:10.1021/nn404872e. PMID24499315.
G. Kannan € autor2 = S. P. Kambhampati; S. R. Kudchadkar. Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury. Journal of Controlled Release. 2017, s. 192–199. doi:10.1016/j.jconrel.2017.03.032. PMID28336376.
Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. Journal of Neuroinflammation. 2017, s. 252. doi:10.1186/s12974-017-1004-5. PMID29258545.
H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine. 2008, s. 1334–1342. doi:10.1002/jgm.1258. PMID18816481.
H. L. Fu; S. X. Cheng; X. Z. Zhang; R. X. Zhuo. Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. Journal of Controlled Release. 2007, s. 181–188. doi:10.1016/j.jconrel.2007.08.031. PMID17900738.
L. J. Twyman; A. Ellis; P. J. Gittins. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chemical Communications. 2012, s. 154–156. doi:10.1039/c1cc14396d. PMID22039580.
patents.google.com
Macromolecular highly branched homogeneous compound based on lysine units. Původci vynálezu: Robert G. DENKEWALTER, Jaroslav KOLC, William J. LUKASAVAGE. US. Patentový spis US4289872A. 1981-09-15. Dostupné: <online> [cit. 2024-09-24].
Macromolecular highly branched homogeneous compound. Původci vynálezu: Robert G. DENKEWALTER, Jaroslav F. KOLC, William J. LUKASAVAGE. US. Patentový spis US4410688A. 1983-10-18. Dostupné: <online> [cit. 2024-09-24].
Dense star polymers having core, core branches, terminal groups. Původci vynálezu: Donald A. TOMALIA, James R. DEWALD. US. Patentový spis US4507466A. 1985-03-26. Dostupné: <online> [cit. 2024-09-24].
semanticscholar.org
api.semanticscholar.org
Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN2366-3987. doi:10.1002/adtp.201900132. S2CID203135854.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
sps.aero
P. Holister; T. Harper. Dendrimers: Technology White Papers [online]. Cientifica, 2003 [cit. 2010-03-17]. Dostupné v archivu pořízeném z originálu dne 2011-07-06.
Treelike molecules branch out – chemist Donald A. Tomalia synthesized first dendrimer molecule – Chemistry – Brief Article. Science News. 1996. Dostupné online.Je zde použita šablona {{Cite news}} označená jako k „pouze dočasnému použití“.
themarketonline.com.au
Starpharma (ASX:SPL) compound shows activity against coronavirus - The Market Herald [online]. The Market Herald, 2020-04-16 [cit. 2020-04-30]. Dostupné online.
tue.nl
research.tue.nl
S. Stevelmens; J. C. Hest; J. F. Jansen; D. A. Boxtel; E. W. Miejer. Synthesis, characterisation and guest-host properties of inverted unimolecular micelles. Journal of the American Chemical Society. 1996, s. 7398–7399. Dostupné online. doi:10.1021/ja954207h.
umich.edu
deepblue.lib.umich.edu
Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research. 2002, s. 1310–1316. Dostupné online. doi:10.1023/a:1020398624602. PMID12403067.
uq.edu.au
espace.library.uq.edu.au
Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats. Journal of Pharmaceutical Sciences. 2018, s. 2509–2513. Dostupné online. doi:10.1016/j.xphs.2018.05.013. PMID29852134.
web.archive.org
P. Holister; T. Harper. Dendrimers: Technology White Papers [online]. Cientifica, 2003 [cit. 2010-03-17]. Dostupné v archivu pořízeném z originálu dne 2011-07-06.
worldcat.org
Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. November 2019, s. 1900132. ISSN2366-3987. doi:10.1002/adtp.201900132. S2CID203135854.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
zenodo.org
B. E. Hirsch; S. Lee; B. Qiao; C. H. Chen; K. P. McDonald; S. L. Tait; A. H. Flood. Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications. 2014, s. 9827–9830. Dostupné online. doi:10.1039/C4CC03725A. PMID25080328.