Lichoběžníková metoda (Czech Wikipedia)

Analysis of information sources in references of the Wikipedia article "Lichoběžníková metoda" in Czech language version.

refsWebsite
Global rank Czech rank
2nd place
4th place
5th place
3rd place
857th place
315th place
4th place
8th place
1,983rd place
2,282nd place
low place
low place

bandgap.io

doi.org

  • OSSENDRIJVER, Mathieu. Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph. Science. 2016-01-29, roč. 351, čís. 6272, s. 482–484. Dostupné online. doi:10.1126/science.aad8085. PMID 26823423. 
  • GOODWIN, E. T., 1949. The evaluation of integrals of the form. Mathematical Proceedings of the Cambridge Philosophical Society. Roč. 45, čís. 2, s. 241–245. ISSN 1469-8064. doi:10.1017/S0305004100024786. (anglicky) 
  • KALAMBET, Yuri; KOZMIN, Yuri; SAMOKHIN, Andrey, 2018. Comparison of integration rules in the case of very narrow chromatographic peaks. Chemometrics and Intelligent Laboratory Systems. Roč. 179, s. 22–30. ISSN 0169-7439. doi:10.1016/j.chemolab.2018.06.001. 

nih.gov

ncbi.nlm.nih.gov

sciencemag.org

science.sciencemag.org

stackexchange.com

math.stackexchange.com

  • Euler-Maclaurin Summation Formula for Multiple Sums [online]. math.stackexchange.com. Dostupné online. 

worldcat.org

  • GOODWIN, E. T., 1949. The evaluation of integrals of the form. Mathematical Proceedings of the Cambridge Philosophical Society. Roč. 45, čís. 2, s. 241–245. ISSN 1469-8064. doi:10.1017/S0305004100024786. (anglicky) 
  • KALAMBET, Yuri; KOZMIN, Yuri; SAMOKHIN, Andrey, 2018. Comparison of integration rules in the case of very narrow chromatographic peaks. Chemometrics and Intelligent Laboratory Systems. Roč. 179, s. 22–30. ISSN 0169-7439. doi:10.1016/j.chemolab.2018.06.001.