Zafar AB, Butler RC, Reese DJ, Gaydos LA, Mennonna PA. Use of 0.3% triclosan (Bacti-Stat) to eradicate an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal nursery. American journal of infection control. 1995, roč. 23, čís. 3, s. 200–8. Dostupné online. DOI10.1016/0196-6553(95)90042-X. PMID7677266.
Fan F, Yan K, Wallis NG, et al. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother.. 2002, roč. 46, čís. 11, s. 3343–7. Dostupné online. DOI10.1128/AAC.46.11.3343-3347.2002. PMID12384334.
Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. American journal of infection control. 2003, roč. 31, čís. 2, s. 124–7. Dostupné online. DOI10.1067/mic.2003.11. PMID12665747.
McBain AJ, Bartolo RG, Catrenich CE, et al. Exposure of sink drain microcosms to triclosan: population dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol.. 2003, roč. 69, čís. 9, s. 5433–42. Dostupné online. DOI10.1128/AEM.69.9.5433-5442.2003. PMID12957932.
Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob. Agents Chemother.. 2004, roč. 48, čís. 8, s. 2973–9. Dostupné online. DOI10.1128/AAC.48.8.2973-2979.2004. PMID15273108.
dioxinfacts.org
Archivovaná kopie. www.dioxinfacts.org [online]. [cit. 2009-01-13]. Dostupné v archivu pořízeném z originálu dne 2009-03-18.
docplayer.se
Edvardsson S, Burman. L G, AdolfssonErici. M, Bäckman. N. Risker och nytta med triklosan i tandkräm. Tandläkartidningen. August 2005, roč. 97, čís. 10, s. 58–64. Dostupné online.
doi.org
dx.doi.org
Coia JE, Duckworth GJ, Edwards DI, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect.. 2006, roč. 63 Suppl 1, s. S1–44. DOI10.1016/j.jhin.2006.01.001. PMID16581155.
Zafar AB, Butler RC, Reese DJ, Gaydos LA, Mennonna PA. Use of 0.3% triclosan (Bacti-Stat) to eradicate an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal nursery. American journal of infection control. 1995, roč. 23, čís. 3, s. 200–8. Dostupné online. DOI10.1016/0196-6553(95)90042-X. PMID7677266.
Heidler J, Halden RU. Mass balance assessment of triclosan removal during conventional sewage treatment.. Chemosphere. 2007, roč. 66, čís. 2, s. 362–369. DOI10.1016/j.chemosphere.2006.04.066. PMID16766013.
Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Chem.. 2005, roč. 24, čís. 3, s. 517–25. DOI10.1897/04-243R.1. PMID15779749.
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem.. 1999, roč. 274, čís. 16, s. 11110–4. DOI10.1074/jbc.274.16.11110. PMID10196195.
Fan F, Yan K, Wallis NG, et al. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother.. 2002, roč. 46, čís. 11, s. 3343–7. Dostupné online. DOI10.1128/AAC.46.11.3343-3347.2002. PMID12384334.
Slater-Radosti C, Van Aller G, Greenwood R, et al. Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. J. Antimicrob. Chemother.. 2001, roč. 48, čís. 1, s. 1–6. DOI10.1093/jac/48.1.1. PMID11418506.
Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. American journal of infection control. 2003, roč. 31, čís. 2, s. 124–7. Dostupné online. DOI10.1067/mic.2003.11. PMID12665747.
McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature. 1998, roč. 394, čís. 6693, s. 531–2. DOI10.1038/28970. PMID9707111.
McBain AJ, Bartolo RG, Catrenich CE, et al. Exposure of sink drain microcosms to triclosan: population dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol.. 2003, roč. 69, čís. 9, s. 5433–42. Dostupné online. DOI10.1128/AEM.69.9.5433-5442.2003. PMID12957932.
Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob. Agents Chemother.. 2004, roč. 48, čís. 8, s. 2973–9. Dostupné online. DOI10.1128/AAC.48.8.2973-2979.2004. PMID15273108.
Yazdankhah SP, Scheie AA, Høiby EA, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist.. 2006, roč. 12, čís. 2, s. 83–90. DOI10.1089/mdr.2006.12.83. PMID16922622.
Nik Veldhoen, Rachel C. Skirrow, Heather Osachoff, Heidi Wigmore, David J. Clapson, Mark P. Gunderson, Graham Van Aggelen and Caren C. Helbing. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology. December 2006, roč. 80, čís. 3, s. 217–227. Dostupné v archivu pořízeném dne 2008-12-28. DOI10.1016/j.aquatox.2006.08.010.
Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere. March 2002, roč. 46, čís. 9–10, s. 1485–1489. DOI10.1016/S0045-6535(01)00255-7.
Coia JE, Duckworth GJ, Edwards DI, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect.. 2006, roč. 63 Suppl 1, s. S1–44. DOI10.1016/j.jhin.2006.01.001. PMID16581155.
Brady LM, Thomson M, Palmer MA, Harkness JL. Successful control of endemic MRSA in a cardiothoracic surgical unit. Med. J. Aust.. 1990, roč. 152, čís. 5, s. 240–5. PMID2255283.
Zafar AB, Butler RC, Reese DJ, Gaydos LA, Mennonna PA. Use of 0.3% triclosan (Bacti-Stat) to eradicate an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal nursery. American journal of infection control. 1995, roč. 23, čís. 3, s. 200–8. Dostupné online. DOI10.1016/0196-6553(95)90042-X. PMID7677266.
Singer H, Muller S, Tixier C, Pillonel L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments.. Environ Sci Technol.. 2002, roč. 36, čís. 23, s. 4998–5004. PMID12523412.
Heidler J, Halden RU. Mass balance assessment of triclosan removal during conventional sewage treatment.. Chemosphere. 2007, roč. 66, čís. 2, s. 362–369. DOI10.1016/j.chemosphere.2006.04.066. PMID16766013.
Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Chem.. 2005, roč. 24, čís. 3, s. 517–25. DOI10.1897/04-243R.1. PMID15779749.
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem.. 1999, roč. 274, čís. 16, s. 11110–4. DOI10.1074/jbc.274.16.11110. PMID10196195.
Fan F, Yan K, Wallis NG, et al. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother.. 2002, roč. 46, čís. 11, s. 3343–7. Dostupné online. DOI10.1128/AAC.46.11.3343-3347.2002. PMID12384334.
Slater-Radosti C, Van Aller G, Greenwood R, et al. Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. J. Antimicrob. Chemother.. 2001, roč. 48, čís. 1, s. 1–6. DOI10.1093/jac/48.1.1. PMID11418506.
Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. American journal of infection control. 2003, roč. 31, čís. 2, s. 124–7. Dostupné online. DOI10.1067/mic.2003.11. PMID12665747.
McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature. 1998, roč. 394, čís. 6693, s. 531–2. DOI10.1038/28970. PMID9707111.
McBain AJ, Bartolo RG, Catrenich CE, et al. Exposure of sink drain microcosms to triclosan: population dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol.. 2003, roč. 69, čís. 9, s. 5433–42. Dostupné online. DOI10.1128/AEM.69.9.5433-5442.2003. PMID12957932.
Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob. Agents Chemother.. 2004, roč. 48, čís. 8, s. 2973–9. Dostupné online. DOI10.1128/AAC.48.8.2973-2979.2004. PMID15273108.
Yazdankhah SP, Scheie AA, Høiby EA, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist.. 2006, roč. 12, čís. 2, s. 83–90. DOI10.1089/mdr.2006.12.83. PMID16922622.
Rule KL, Ebbett VR, Vikesland PJ. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ. Sci. Technol.. 2005, roč. 39, čís. 9, s. 3176–85. PMID15926568.
Archivovaná kopie. www.dioxinfacts.org [online]. [cit. 2009-01-13]. Dostupné v archivu pořízeném z originálu dne 2009-03-18.
Nik Veldhoen, Rachel C. Skirrow, Heather Osachoff, Heidi Wigmore, David J. Clapson, Mark P. Gunderson, Graham Van Aggelen and Caren C. Helbing. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology. December 2006, roč. 80, čís. 3, s. 217–227. Dostupné v archivu pořízeném dne 2008-12-28. DOI10.1016/j.aquatox.2006.08.010.
webmd.com
Safety of Antibacterial Soap Debated [online]. [cit. 2008-03-08]. Dostupné online.