Choanozoa (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Choanozoa" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
6th place
40th place
26th place
153rd place
2,106th place
139th place
4th place
7th place
18th place
181st place

archive.org

  • Christian Gottfried Ehrenberg: Über die Entwicklung und Lebensdauer der Infusorien. In: Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. Aus dem Jahre 1831. Berlin 1832, S. 95 (Digitalisat).
  • Raoul Heinrich Francé: Der Organismus der Craspedomonaden. Budapest 1897, S. 118 (Digitalisat).
  • Georg Fresenius: Beiträge zur Kenntniss mikroskopischer Organismen. In: Abhandlungen der Senckenbergischen naturforschenden Gesellschaft. Band 2, 1858, S. 233, 242, Tafel X (Digitalisat).
  • Raoul Heinrich Francé: Der Organismus der Craspedomonaden. Budapest 1897, S. 121 (Digitalisat).
  • Félix Dujardin: Histoire naturelle des zoophytes. Librairie encyclopédique de Roret, Paris 1841, S. 306 (Digitalisat).
  • Henry James-Clark: On the Spongiae Ciliatae as Infusoria Flagellata. In: Memoirs read before the Boston Society of Natural History. Band 1, 1867, S. 305–340 (Digitalisat).

doi.org

  • John Ellis: On the nature and formation of sponges. In: Philosophical Transactions of the Royal Society of London. Band 55, 1765, doi:10.1098/rstl.1765.0032, S. 283–284.
  • vgl. Gert Wörheide, Martin Dohrmann, Dirk Erpenbeck, Claire Larroux, Manuel Maldonado, Oliver Voigt, Carole Borchiellini, Dennis V. Lavrov: Deep Phylogeny and Evolution of Sponges (Phylum Porifera) . In: Advances in Marine Biology. Band 61, 2012, doi:10.1016/B978-0-12-387787-1.00007-6, S. 1.
  • Patricia O. Wainright, Gregory Hinkle, Mitchell L. Sogin, Shawn K. Stickel: Monophyletic origins of the Metazoa: An evolutionary link with fungi. In: Science. Band 260, 1993, doi:10.1126/science.8469985, S. 340.
  • Thomas Cavalier-Smith, Ema E-Y. Chao: Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. In: Journal of Molecular Evolution. Band 56, 2003, doi:10.1007/s00239-002-2424-z, S. 540.
  • Emma Steenkamp, Jane Wright, Sandra Baldauf: The Protistan Origins of Animals and Fungi. In: Molecular Biology and Evolution. Band 23, 2006, doi:10.1093/molbev/msj011, S. 99.
  • Jean-Luc Da Lage, Etienne G. J. Danchin, Didier Casane: Where do animal α-amylases come from? An interkingdom trip. In: Federation of European Biochemical Societies Letters. Band 581, 2007, doi:10.1016/j.febslet.2007.07.019, S. 3931–3932.
  • Stephen R. Fairclough, Zehua Chen, Eric Kramer, Qiandong Zeng, Sarah Young, Hugh M. Robertson, Emina Begovic, Daniel J. Richter, Carsten Russ, M. Jody Westbrook, Gerard Manning, B. Franz Lang, Brian J. Haas, Chad Nusbaum, Nicole King: Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. In: Genome Biology. Band 14, 2013, R 15, doi:10.1186/gb-2013-14-2-r15, S. 4.
  • Graham E. Budd, and Sören Jensen: The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. In: Biological Reviews. Band 92, 2017, doi:10.1111/brv.12239, S. 448.
  • Thibaut Brunet, Nicole King: The Origin of Animal Multicellularity and Cell Differentiation. In: Developmental Cell. Band 43, 2017, doi:10.1016/j.devcel.2017.09.016, S. 127.
  • Hervé Philippe, Romain Derelle, Philippe Lopez, Kerstin Pick, Carole Borchiellini, Nicole Boury-Esnault, Jean Vacelet, Emmanuelle Renard, Evelyn Houliston, Eric Quéinnec, Corinne Da Silva, Patrick Wincker, Hervé Le Guyader, Sally Leys, Daniel J. Jackson, Fabian Schreiber, Dirk Erpenbeck, Burkhard Morgenstern, Gert Wörheide, Michael Manuel: Phylogenomics Revives Traditional Views on Deep Animal Relationships. In: Current Biology. Band 19, 2009, doi:10.1016/j.cub.2009.02.052, S. 709.
  • Thomas Cavalier-Smith: Kingdom Protozoa and Its 18 Phyla. In: Microbiological Reviews. Band 57, 1993, doi:10.1128/MMBR.57.4.953-994.1993, S. 971.
  • Kamran Shalchian-Tabrizi, Marianne A. Minge, Mari Espelund, Russell Orr, Torgeir Ruden, Kjetill S. Jakobsen, Thomas Cavalier-Smith: Multigene Phylogeny of Choanozoa and the Origin of Animals. In: PLOS One. Band 3, 2008, e2098, doi:10.1371/journal.pone.0002098, S. 2.
  • Sina M. Adl, David Bass, Christopher E. Lane, Julius Lukes, Conrad L. Schoch, Alexey Smirnov, Sabine Agatha, Cedric Berney, Matthew W. Brown, Fabien Burki, Paco Cárdenas, Ivan Cepicka, Lyudmila Chistyakova, Javier del Campo, Micah Dunthorn, Bente Edvardsen, Yana Eglit, Laure Guillou, Vladimír Hampl, Aaron A. Heiss, Mona Hoppenrath, Timothy Y. James, Anna Karnkowska, Sergey Karpov, Eunsoo Kim, Martin Kolisko, Alexander Kudryavtsev, Daniel J.G. Lahr, Enrique Lara, Line Le Gall, Denis H. Lynn, David G. Mann, Ramon Massana, Edward A.D. Mitchell, Christine Morrow, Jong Soo Park, Jan W. Pawlowski, Martha J. Powell, Daniel J. Richter, Sonja Rueckert, Lora Shadwick, Satoshi Shimano, Frederick W. Spiegel, Guifré Torruella, Noha Youssef, Vasily Zlatogursky, Qianqian Zhang: Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. In: Journal of Eukaryotic Microbiology. Band 66, 2019, doi:10.1111/jeu.12691, S. 20.
  • Stephen R. Fairclough, Mark J. Dayel, Nicole King: Multicellular development in a choanoflagellate. In: Current Biology. Band 20, 2010, doi:10.1016/j.cub.2010.09.014, S. R875.
  • Thibaut Brunet, Nicole King: The Origin of Animal Multicellularity and Cell Differentiation. In: Developmental Cell. Band 43, 2017, doi:10.1016/j.devcel.2017.09.016, S. 125.
  • Thomas Cavalier-Smith: Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. In: Philosophical Transactions of the Royal Society B. Band 372, 2017, doi:10.1098/rstb.2015.0476, Artikel Nr. 20150476, S. 2.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 10, 12–13 sowie S. 9, Abb. 4F im Vergleich zu S. 9, Abb. 4G und weiterhin S. 9, Abb. 4B im Vergleich zu S. 6, Abb. 2A und 2B.
  • Jasmine L. Mah, Karen K. Christensen-Dalsgaard, Sally P. Leys: Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. In: Evolution & Development. Band 16, 2014, doi:10.1111/ede.12060, S. 25.
  • Casey W. Dunn, Sally P. Leys, Steven H.D. Haddock: The hidden biology of sponges and ctenophores. In: Trends in Ecology & Evolution. Band 30, 2015, doi:10.1016/j.tree.2015.03.003, S. 287.
  • Denis V. Tikhonenkov, Kirill V. Mikhailov, Elisabeth Hehenberger, Sergei A. Karpov, Kristina I. Prokina, Anton S. Esaulov, Olga I. Belyakova, Yuri A. Mazei, Alexander P. Mylnikov, Vladimir V. Aleoshin, Patrick J. Keeling: New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals. In: Current Biology. Band 30, 2020, doi:10.2139/ssrn.3606769, S. 4504 (S. 5).
  • Kamran Shalchian-Tabrizi, Marianne A. Minge, Mari Espelund, Russell Orr, Torgeir Ruden, Kjetill S. Jakobsen, Thomas Cavalier-Smith: Multigene Phylogeny of Choanozoa and the Origin of Animals. In: PLOS One. Band 3, 2008, e2098, doi:10.1371/journal.pone.0002098, S. 5.
  • Guifré Torruella, Romain Derelle, Jordi Paps, B. Franz Lang, Andrew J. Roger, Kamran Shalchian-Tabrizi, Iñaki Ruiz-Trillo: Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains. In: Molecular Biology and Evolution. Band 29, 2011, doi:10.1093/molbev/msr185, S. 536.
  • Salma Sana, Emilie A. Hardouin, Richard Paley, Tiantian Zhang, Demetra Andreou: The complete mitochondrial genome of a parasite at the animal-fungal boundary. In: Parasites & Vectors. Band 13, 2020, Artikel-Nr. 81, doi:10.1186/s13071-020-3926-5, S. 2.
  • Victoria Shabardina, Jennah E. Dharamshi, Patricia S. Ara, Meritxell Antó, Fernando J. Bascón, Hiroshi Suga, Wyth Marshall, Claudio Scazzocchio, Elena Casacuberta, Iñaki Ruiz-Trillo: Ichthyosporea: a window into the origin of animals. In: Communications Biology, Band 7, Nr. 915, 29. Juli 2024; doi:10.1038/s42003-024-06608-5 (englisch).
  • Thomas Cavalier-Smith, M.T.E. Paula Allsopp: Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. In: European Journal of Protistology. Band 32, 1996, doi:10.1016/S0932-4739(96)80053-8, S. 306.
  • Elisabeth Hehenberger, Denis V. Tikhonenkov, Martin Kolisko, Javier del Campo, Anton S. Esaulov, Alexander P. Mylnikov, Patrick J. Keeling: Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals. In: Current Biology. Band 27, 2017, doi:10.1016/j.cub.2017.06.006, S. 2043, e2.
  • Elisabeth Hehenberger, Denis V. Tikhonenkov, Martin Kolisko, Javier del Campo, Anton S. Esaulov, Alexander P. Mylnikov, Patrick J. Keeling: Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals. In: Current Biology. Band 27, 2017, doi:10.1016/j.cub.2017.06.006, S. 2045.
  • Frank Nitsche, Martin Carr, Hartmut Arndt, Barry S.C. Leadbeater: Higher Level Taxonomy and Molecular Phylogenetics of the Choanoflagellatea. In: Journal of Eukaryotic Microbiology. Band 58, 2011, doi:10.1111/j.1550-7408.2011.00572.x, S. 452.
  • Martin Dohrmann, Gert Wörheide: Dating early animal evolution using phylogenomic data. In: Scientific Reports. Band 7, 2017, Artikel Nr. 3599, doi:10.1038/s41598-017-03791-w, S. 4.
  • Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche: A six-gene phylogeny provides new insights into choanoflagellate evolution. In: Molecular Phylogenetics and Evolution. Band 107, 2017, doi:10.1016/j.ympev.2016.10.011, S. 166–167, 172.
  • Mark J.Dayel, Rosanna A. Alegado, Stephen R. Fairclough, Tera C. Levin, Scott A. Nichols, Kent McDonald, Nicole King: Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. In: Developmental Biology. Band 357, 2011, doi:10.1016/j.ydbio.2011.06.003, S. 73.
  • Julia M. Brown, Jessica M. Labonté, Joseph Brown, Nicholas R. Record, Nicole J. Poulton, Michael E. Sieracki, Ramiro Logares, Ramunas Stepanauskas: Single Cell Genomics Reveals Viruses Consumed by Marine Protists. In: Frontiers in Microbiology. Band 11, 2020, Artikel Nr. 524828, doi:10.3389/fmicb.2020.524828, S. 8–9.
  • Thomas Cavalier-Smith: Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. In: Philosophical Transactions of the Royal Society B. Band 372, 2017, doi:10.1098/rstb.2015.0476, Artikel Nr. 20150476, S. 1.
  • Richard K. Grosberg, Richard R. Strathmann: The Evolution of Multicellularity: A Minor Major Transition? In: Annual Review of Ecology, Evolution, and Systematics. Band 38, 2007, doi:10.1146/annurev.ecolsys.36.102403.114735, S. 623.
  • Daniel B. Mills, Donald E. Canfield: Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?. In: Bioessays. Band 36, 2014, doi:10.1002/bies.201400101, S. 1149.
  • Aaron L. Fidler, Carl E. Darris, Sergei V. Chetyrkin, Vadim K. Pedchenko, Sergei P. Boudko, Kyle L. Brown, W. Gray Jerome, Julie K. Hudson, Antonis Rokas, Billy G. Hudson: Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. In: eLife. Band 6, 2017, Artikel Nr. e24176, doi:10.7554/eLife.24176, S. 4–5.
  • Daniel J. Richter, Nicole King: The Genomic and Cellular Foundations of Animal Origins. In: Annual Review of Genetics. Band 47, 2013, doi:10.1146/annurev-genet-111212-133456, S. 509–510.
  • Paschalia Kapli, Maximilian J. Telford: Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. In: Science Advances. Band 6, 2020, Artikel eabc5162, doi:10.1126/sciadv.abc5162, S. 7.
  • Graham E. Budd, and Sören Jensen: The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. In: Biological Reviews. Band 92, 2017, doi:10.1111/brv.12239, S. 452.
  • Emmanuelle Renard, Jean Vacelet, Eve Gazave, Pascal Lapébie, Carole Borchiellini, Alexander V Ereskovsky: Origin of the neuro-sensory system: new and expected insights from sponges. In: Integrative Zoology. Band 4, 2009, doi:10.1111/j.1749-4877.2009.00167.x, S. 299.
  • Jeffrey Colgren, Scott A. Nichols: The significance of sponges for comparative studies of developmental evolution. In: Wiley Interdisciplinary Reviews: Developmental Biology. Band 9, 2020, doi:10.1002/wdev.359, Artikel Nr. e359, S. 1: „We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack.“
  • Roland M. Bagby: The fine structure of myocytes in the sponges Microciona prolifera (Ellis and Solander) and Tedania ignis (Duchassaing and Michelotti)†. In: Journal of Morphology. Band 118, 1966, doi:10.1002/jmor.1051180203, S. 167: „Myocytes are long, fusiform cells found in the osculum and other contractile areas of many sponges.“
  • Hans Ulrik Riisgård, Poul S. Larsen: Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders. In: Journal of Marine Science and Engineering. Band 10, 2022, doi:10.3390/jmse10050607, Artikel Nr. 607, S. 1: „Although sponges lack nerves and muscle tissues, coordinated contraction-expansion responses, including partial or complete closure of the osculum to mechanical and chemical stimuli, are common among sponges due to the presence of contractile cells (myocytes), which results in temporary reduced or arrested water flow.“
  • Detlev Arendt: Elementary nervous systems. In: Philosophical Transactions of the Royal Society B. Band 376, 2020, doi:10.1098/rstb.2020.0347, Artikel Nr. 20200347, S. 6, 9.
  • Jean Vacelet, NicoleBoury-Esnault: Carnivorous sponges. In: Nature. Band 373, 1995, doi:10.1016/j.ympev.2015.08.022, S. 333.
  • Henry M. Reiswig: Bacteria as food for temperate-water marine sponges. In: Canadian Journal of Zoology. Band 53, 1975, doi:10.1139/z75-072, S. 582.
  • Manuel Maldonado: Choanoflagellates, choanocytes, and animal multicellularity. In: Invertebrate Biology. Band 123, 2004, doi:10.1111/j.1744-7410.2004.tb00138.x, S. 1.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 2, 3.
  • Thomas Cavalier-Smith: Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. In: Philosophical Transactions of the Royal Society B. Band 372, 2017, doi:10.1098/rstb.2015.0476, Artikel Nr. 20150476, S. 5.
  • Claus Nielsen: Six major steps in animal evolution: are we derived sponge larvae?. In: Evolution & Development. Band 10, 2008, doi:10.1111/j.1525-142X.2008.00231.x, S. 243–246.
  • Martin Dohrmann, Gert Wörheide: Dating early animal evolution using phylogenomic data. In: Scientific Reports. Band 7, 2017, Artikel Nr. 3599, doi:10.1038/s41598-017-03791-w, S. 3–4.
  • Kamran Shalchian-Tabrizi, Marianne A. Minge, Mari Espelund, Russell Orr, Torgeir Ruden, Kjetill S. Jakobsen, Thomas Cavalier-Smith: Multigene Phylogeny of Choanozoa and the Origin of Animals. In: PLOS One. Band 3, 2008, e2098, doi:10.1371/journal.pone.0002098, S. 4–5.
  • Arnau Sebé-Pedrós, Pawel Burkhardt, Núria Sánchez-Pons, Stephen R. Fairclough, B. Franz Lang, Nicole King, Iñaki Ruiz-Trillo: Insights into the Origin of Metazoan Filopodia and Microvilli. In: Molecular Biology and Evolution. Band 30, 2013, doi:10.1093/molbev/mst110, S. 2013–2014.
  • Miguel A. Naranjo-Ortiz, Toni Gabaldón: Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. In: Biological Reviews. Band 94, 2019, doi:10.1111/brv.12550, S. 2107.
  • Arnau Sebé-Pedrós, Pawel Burkhardt, Núria Sánchez-Pons, Stephen R. Fairclough, B. Franz Lang, Nicole King, Iñaki Ruiz-Trillo: Insights into the Origin of Metazoan Filopodia and Microvilli. In: Molecular Biology and Evolution. Band 30, 2013, doi:10.1093/molbev/mst110, S. 2017.
  • Arnau Sebé-Pedrós, Pawel Burkhardt, Núria Sánchez-Pons, Stephen R. Fairclough, B. Franz Lang, Nicole King, Iñaki Ruiz-Trillo: Insights into the Origin of Metazoan Filopodia and Microvilli. In: Molecular Biology and Evolution. Band 30, 2013, doi:10.1093/molbev/mst110, S. 2013, 2020.
  • Oleg Simakov, Jessen Bredeson, Kodiak Berkoff, Ferdinand Marletaz, Therese Mitros, Darrin T. Schultz, Brendan L. O’Connell, Paul Dear, Daniel E. Martinez, Robert E. Steele, Richard E. Green, Charles N. David, Daniel S. Rokhsar: Deeply conserved synteny and the evolution of metazoan chromosomes. In: Science Advances. Band 8, 2022, Artikel Nr. eabi5884, doi:10.1126/sciadv.abi5884, S. 10.
  • Oleg Simakov, Jessen Bredeson, Kodiak Berkoff, Ferdinand Marletaz, Therese Mitros, Darrin T. Schultz, Brendan L. O’Connell, Paul Dear, Daniel E. Martinez, Robert E. Steele, Richard E. Green, Charles N. David, Daniel S. Rokhsar: Deeply conserved synteny and the evolution of metazoan chromosomes. In: Science Advances. Band 8, 2022, Artikel Nr. eabi5884, doi:10.1126/sciadv.abi5884, S. 2.
  • Ming Tang, Xu Chu, Jihua Hao, Bing Shen: Orogenic quiescence in Earth’s middle age. In: Science. Band 371, 2021, doi:10.1126/science.abf1876, S. 729.
  • Noah J. Planavsky, Devon B. Cole, Terry T. Isson, Christopher T. Reinhard, Peter W. Crockford, Nathan D. Sheldon, Timothy W. Lyons: A case for low atmospheric oxygen levels during Earth's middle history. In: Emerging Topics in Life Sciences. Band 2, 2018, ETLS20170161, doi:10.1042/ETLS20170161, S. 149.
  • Mansi Srivastava, Oleg Simakov, Jarrod Chapman, Bryony Fahey, Marie E. A. Gauthier, Therese Mitros, Gemma S. Richards, Cecilia Conaco, Michael Dacre, Uffe Hellsten, Claire Larroux, Nicholas H. Putnam, Mario Stanke, Maja Adamska, Aaron Darling, Sandie M. Degnan, Todd H. Oakley, David C. Plachetzki, Yufeng Zhai, Marcin Adamski, Andrew Calcino, Scott F. Cummins, David M. Goodstein, Christina Harris, Daniel J. Jackson, Sally P. Leys, Shengqiang Shu, Ben J. Woodcroft, Michel Vervoort, Kenneth S. Kosik, Gerard Manning, Bernard M. Degnan, Daniel S. Rokhsar: The Amphimedon queenslandica genome and the evolution of animal complexity. In: Nature. Band 466, 2010, doi:10.1038/nature09201, S. 723–724.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13046.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13047, 13049–13050.
  • Nicole King, Christopher T. Hittinger, Sean B. Carroll: Evolution of key cell signaling and adhesion protein families predates animal origins. In: Science. 301. Jahrgang, Nr. 5631, Juli 2003, S. 361–363, doi:10.1126/science.1083853, PMID 12869759, bibcode:2003Sci...301..361K (englisch).
  • Paul K. Strother, Martin D. Brasier, David Wacey, Leslie Timpe, Martin Saunders, Charles H. Wellman: A possible billion-year-old holozoan with differentiated multicellularity. In: Current Biology. Band 31, 2021, doi:10.1016/j.cub.2021.03.051, S. 2658–2665.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13049.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13050.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13048.
  • Scott Anthony Nichols, Brock William Roberts, Daniel Joseph Richter, Stephen Robert Fairclough, Nicole King: Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. In: PNAS. Band 109, 2012, doi:10.1073/pnas.1120685109, S. 13046–13049.
  • Thibaut Brunet, Nicole King: The Origin of Animal Multicellularity and Cell Differentiation. In: Developmental Cell. Band 43, 2017, doi:10.1016/j.devcel.2017.09.016, S. 130.
  • Aaron L. Fidler, Carl E. Darris, Sergei V. Chetyrkin, Vadim K. Pedchenko, Sergei P. Boudko, Kyle L. Brown, W. Gray Jerome, Julie K. Hudson, Antonis Rokas, Billy G. Hudson: Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. In: eLife. Band 6, 2017, Artikel Nr. e24176, doi:10.7554/eLife.24176, S. 1, 18.
  • Aaron L. Fidler, Carl E. Darris, Sergei V. Chetyrkin, Vadim K. Pedchenko, Sergei P. Boudko, Kyle L. Brown, W. Gray Jerome, Julie K. Hudson, Antonis Rokas, Billy G. Hudson: Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. In: eLife. Band 6, 2017, Artikel Nr. e24176, doi:10.7554/eLife.24176, S. 18.
  • Aaron L. Fidler, Carl E. Darris, Sergei V. Chetyrkin, Vadim K. Pedchenko, Sergei P. Boudko, Kyle L. Brown, W. Gray Jerome, Julie K. Hudson, Antonis Rokas, Billy G. Hudson: Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. In: eLife. Band 6, 2017, Artikel Nr. e24176, doi:10.7554/eLife.24176, S. 11.
  • Dale Kaiser: Building a multicellular organism. In: Annual Review of Genetics. Band 35, 2001, doi:10.1146/annurev.genet.35.102401.090145, S. 117, 120.
  • Richard K. Grosberg, Richard R. Strathmann: The Evolution of Multicellularity: A Minor Major Transition? In: Annual Review of Ecology, Evolution, and Systematics. Band 38, 2007, doi:10.1146/annurev.ecolsys.36.102403.114735, S. 628.
  • Matthew D. Herron, Joshua M. Borin, Jacob C. Boswell, Jillian Walker, I-Chen Kimberly Chen, Charles A. Knox, Margrethe Boyd, Frank Rosenzweig, William C. Ratcliff: De novo origins of multicellularity in response to predation. In: Scientific Reports. Band 9, 2019, doi:10.1038/s41598-019-39558-8, Artikel Nr. 2328.
  • Joana P. Bernardes, Uwe John, Noemi Woltermann, Martha Valiadi, Ruben J. Hermann, Lutz Becks: The evolution of convex trade-offs enables the transition towards multicellularity. In: Nature Communications. Band 12, 2021, Artikel Nr. 4222, doi:10.1038/s41467-021-24503-z, S. 6.
  • Joana P. Bernardes, Uwe John, Noemi Woltermann, Martha Valiadi, Ruben J. Hermann, Lutz Becks: The evolution of convex trade-offs enables the transition towards multicellularity. In: Nature Communications. Band 12, 2021, Artikel Nr. 4222, doi:10.1038/s41467-021-24503-z, S. 2.
  • Mark J. Dayel, Rosanna A. Alegado, Stephen R. Fairclough, Tera C. Levin, Scott A. Nichols, Kent McDonald, Nicole King: Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. In: Developmental Biology. Band 357, 2011, doi:10.1016/j.ydbio.2011.06.003, S. 76.
  • Hoa Nguyen, Mimi A.R. Koehl, Christian Oakes, Greg Bustamante, Lisa Fauci: Effects of cell morphology and attachment to a surface on the hydrodynamic performance of unicellular choanoflagellates. In: Journal of the Royal Society Interface. Band 16, 2019, Artikel Nr. 20180736, doi:10.1098/rsif.2018.0736, S. 1.
  • Mark J. Dayel, Rosanna A. Alegado, Stephen R. Fairclough, Tera C. Levin, Scott A. Nichols, Kent McDonald, Nicole King: Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. In: Developmental Biology. Band 357, 2011, doi:10.1016/j.ydbio.2011.06.003, S. 75.
  • Rosanna A. Alegado, Laura W. Brown, Shugeng Cao, Renee K. Dermenjian, Richard Zuzow, Stephen R. Fairclough, Jon Clardy, Nicole King: A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. In: eLife. Band 1, 2012, Artikel Nr. e00013, doi:10.7554/eLife.00013, S. 7, 10.
  • Rosanna A. Alegado, Laura W. Brown, Shugeng Cao, Renee K. Dermenjian, Richard Zuzow, Stephen R. Fairclough, Jon Clardy, Nicole King: A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. In: eLife. Band 1, 2012, Artikel Nr. e00013, doi:10.7554/eLife.00013, S. 5, 6.
  • Rosanna A. Alegado, Laura W. Brown, Shugeng Cao, Renee K. Dermenjian, Richard Zuzow, Stephen R. Fairclough, Jon Clardy, Nicole King: A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. In: eLife. Band 1, 2012, Artikel Nr. e00013, doi:10.7554/eLife.00013, S. 6.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 2.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 2, 7.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 1, 2, 7, 8, 11–12.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 8.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 12.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 1, 5, 6, 11.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 5.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 6, Abb. 2B Mitte.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 6, 7.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 7, Abb. 4M und 4N.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 1, 7, 8, 12.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 1, 4, 11, 12.
  • K. H. Hake, Patrick T. West, Kent L. McDonald, Davis Laundon, Crystal Feng, Pawel Burkhardt, Daniel J. Richter, Jill Banfield, Nicole King: A large colonial choanoflagellate from Mono Lake harbors live bacteria. In: mBio. Band 15, 2024, doi:10.1128/mbio.01623-24, Artikel Nr. 15:e01623-24, Abbildung 1, S. 2–3.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 3.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 1.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 3–5.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 9.
  • Thibaut Brunet, Marvin Albert, William Roman, Maxwell C. Coyle, Danielle C. Spitzer, Nicole King: A flagellate-to-amoeboid switch in the closest living relatives of animals. In: eLife. Band 10, 2021, Artikel Nr. e61037, doi:10.7554/eLife.61037, S. 10.
  • Shunsuke Sogabe, William L. Hatleberg, Kevin M. Kocot, Tahsha E. Say, Daniel Stoupin, Kathrein E. Roper, Selene L. Fernandez-Valverde, Sandie M. Degnan, Bernard M. Degnan: Pluripotency and the origin of animal multicellularity. In: Nature. Band 570, 2019, doi:10.1038/s41586-019-1290-4, S. 519, 521–522.
  • Shunsuke Sogabe, William L. Hatleberg, Kevin M. Kocot, Tahsha E. Say, Daniel Stoupin, Kathrein E. Roper, Selene L. Fernandez-Valverde, Sandie M. Degnan, Bernard M. Degnan: Pluripotency and the origin of animal multicellularity. In: Nature. Band 570, 2019, doi:10.1038/s41586-019-1290-4, S. 521.
  • Shunsuke Sogabe, William L. Hatleberg, Kevin M. Kocot, Tahsha E. Say, Daniel Stoupin, Kathrein E. Roper, Selene L. Fernandez-Valverde, Sandie M. Degnan, Bernard M. Degnan: Pluripotency and the origin of animal multicellularity. In: Nature. Band 570, 2019, doi:10.1038/s41586-019-1290-4, S. 519, 522.
  • Davis Laundon, Ben T. Larson, Kent McDonald, Nicole King, Pawel Burkhardt: The architecture of cell differentiation in choanoflagellates and sponge choanocytes. In: PLOS Biology. Band 17, 2019, doi:10.1371/journal.pbio.3000226, Artikel Nr. e3000226, S. 2.
  • Shunsuke Sogabe, William L. Hatleberg, Kevin M. Kocot, Tahsha E. Say, Daniel Stoupin, Kathrein E. Roper, Selene L. Fernandez-Valverde, Sandie M. Degnan, Bernard M. Degnan: Pluripotency and the origin of animal multicellularity. In: Nature. Band 570, 2019, doi:10.1038/s41586-019-1290-4, S. 522.
  • John A. Cunningham, Alexander G. Liu, Stefan Bengtson, Philip C. J. Donoghue: The origin of animals: Can molecular clocks and the fossil record be reconciled? In: BioEssays. Band 39, 2016, doi:10.1002/bies.201600120, S. 1.
  • Jonathan B. Antcliffe, Richard H. T. Callow, Martin D. Brasier: Giving the early fossil record of sponges a squeeze. In: Biological Reviews. Band 89, 2014, doi:10.1111/brv.12090, S. 972 (S. 1).
  • Ilya Bobrovskiy, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, Jochen J. Brocks: Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. In: Science, Band 361, 2018, doi:10.1126/science.aat7228, S. 1246–1249.
  • Qing Tang, Bin Wan, Xunlai Yuan, A.D. Muscente, Shuhai Xiao: Spiculogenesis and biomineralization in early sponge animals. In: Nature Communications. Band 10, 2019, Artikel Nr. 3348, doi:10.1038/s41467-019-11297-4, S. 9.
  • Zongjun Yin, Maoyan Zhu, Eric H. Davidson, David J. Bottjer, Fangchen Zhao, Paul Tafforeau: Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. In: PNAS. Band 112, 2015, doi:10.1073/pnas.1414577112, S. E1457.
  • Elizabeth C. Turner: Possible poriferan body fossils in early Neoproterozoic microbial reefs. In: Nature. Band 596, 2021, doi:10.1038/s41586-021-03773-z, S. 87–88 (S. 1–2).
  • Elizabeth C. Turner: Possible poriferan body fossils in early Neoproterozoic microbial reefs. In: Nature. Band 596, 2021, doi:10.1038/s41586-021-03773-z, S. 90 (S. 4).
  • Elisa Maria Costa-Paiva, Beatriz Mello, Bruno Santos Bezerra, Christopher J. Coates, Kenneth M. Halanych, Federico Brown, Juliana de Moraes Leme, Ricardo I. F. Trindade: Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals. In: Geobiology. Band 20, 2022, doi:10.1111/gbi.12481, S. 333, 340–341.
  • Charles Kimberlin 'Bob' Brain, Anthony R. Prave, Karl-Heinz Hoffmann, Anthony E. Fallick, Andre Botha, Donald A. Herd, Craig Sturrock, Iain Young, Daniel J. Condon, Stuart G. Allison: The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. In: South African Journal of Science. Band 108, 2012, Artikel Nr. 658, doi:10.4102/sajs.v108i1/2.658, S. 3, 5.
  • Charles Kimberlin 'Bob' Brain, Anthony R. Prave, Karl-Heinz Hoffmann, Anthony E. Fallick, Andre Botha, Donald A. Herd, Craig Sturrock, Iain Young, Daniel J. Condon, Stuart G. Allison: The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. In: South African Journal of Science. Band 108, 2012, Artikel Nr. 658, doi:10.4102/sajs.v108i1/2.658, S. 7.
  • Jonathan B. Antcliffe, Richard H. T. Callow, Martin D. Brasier: Giving the early fossil record of sponges a squeeze. In: Biological Reviews. Band 89, 2014, doi:10.1111/brv.12090, S. 982 (S. 11).
  • Scott MacLennan, Yuem Park, Nicholas Swanson-Hysell, Adam Maloof, Blair Schoene, Mulubrhan Gebreslassie, Eliel Antilla, Tadele Tesema, Mulugeta Alene, Bereket Haileab: The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation. In: Geology. Band 46, 2018, doi:10.1130/G40171.1, S. 3–4.
  • Elias J. Rugen, Guido Pastore, Pieter Vermeesch, Anthony M. Spencer, David Webster, Adam G. G. Smith, Andrew Carter, Graham A. Shields: Glacially influenced provenance and Sturtian affinity revealed by detrital zircon U–Pb ages from sandstones in the Port Askaig Formation, Dalradian Supergroup. In: Journal of the Geological Society. Band 181, 2024, doi:10.1144/jgs2024-029, S. 1, 6.
  • Elias J. Rugen, Guido Pastore, Pieter Vermeesch, Anthony M. Spencer, David Webster, Adam G. G. Smith, Andrew Carter, Graham A. Shields: Glacially influenced provenance and Sturtian affinity revealed by detrital zircon U–Pb ages from sandstones in the Port Askaig Formation, Dalradian Supergroup. In: Journal of the Geological Society. Band 181, 2024, doi:10.1144/jgs2024-029, S. 1.
  • Erik A. Sperling, Charles J. Wolock, Alex S. Morgan, Benjamin C. Gill, Marcus Kunzmann, Galen P. Halverson, Francis A. Macdonald, Andrew H. Knoll, David T. Johnston: Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. In: Nature. Band 523, 2015, doi:10.1038/nature14589, S. 451.
  • Maxwell A. Lechte, Malcolm W. Wallace, Ashleigh van Smeerdijk Hood, Weiqiang Li, Ganqing Jiang, Galen P. Halverson, Dan Asael, Stephanie L. McColl, Noah J. Planavsky: Subglacial meltwater supported aerobic marine habitats during Snowball Earth. In: PNAS. Band 116, 2019, doi:10.1073/pnas.1909165116, S. 25478.
  • Philip A. Allen, James L. Etienne: Sedimentary challenge to Snowball Earth. In: Nature Geoscience. Band 1, 2008, doi:10.1038/ngeo355, S. 824.
  • Wei Wei, Robert Frei, Robert Klaebe, Da Li, Guang-Yi Wei, Hong-Fei Ling: Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. In: Precambrian Research. Band 319, 2018, doi:10.1016/j.precamres.2018.02.009, S. 1, 10.
  • Paul F. Hoffman, Dorian S. Abbot, Yosef Ashkenazy, Douglas I. Benn, Jochen J. Brocks, Phoebe A. Cohen, Grant M. Cox, Jessica R. Creveling, Yannick Donnadieu, Douglas H. Erwin, Ian J. Fairchild, David Ferreira, Jason C. Goodman, Galen P. Halverson, Malte F. Jansen, Guillaume Le Hir, Gordon D. Love, Francis A. Macdonald, Adam C. Maloof, Camille A. Partin, Gilles Ramstein, Brian E. J. Rose, Catherine V. Rose, Peter M. Sadler, Eli Tziperman, Aiko Voigt, Stephen G. Warren: Snowball Earth climate dynamics and Cryogenian geology-geobiology. In: Science Advances. Band 3, 2017, Artikel Nr. e1600983, doi:10.1126/sciadv.1600983, S. 14–16.
  • Paul F. Hoffman, Dorian S. Abbot, Yosef Ashkenazy, Douglas I. Benn, Jochen J. Brocks, Phoebe A. Cohen, Grant M. Cox, Jessica R. Creveling, Yannick Donnadieu, Douglas H. Erwin, Ian J. Fairchild, David Ferreira, Jason C. Goodman, Galen P. Halverson, Malte F. Jansen, Guillaume Le Hir, Gordon D. Love, Francis A. Macdonald, Adam C. Maloof, Camille A. Partin, Gilles Ramstein, Brian E. J. Rose, Catherine V. Rose, Peter M. Sadler, Eli Tziperman, Aiko Voigt, Stephen G. Warren: Snowball Earth climate dynamics and Cryogenian geology-geobiology. In: Science Advances. Band 3, 2017, Artikel Nr. e1600983, doi:10.1126/sciadv.1600983, S. 20–21.
  • Wei Wei, Robert Frei, Robert Klaebe, Da Li, Guang-Yi Wei, Hong-Fei Ling: Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. In: Precambrian Research. Band 319, 2018, doi:10.1016/j.precamres.2018.02.009, S. 10.
  • Maxwell A. Lechte, Malcolm W. Wallace, Ashleigh van Smeerdijk Hood, Weiqiang Li, Ganqing Jiang, Galen P. Halverson, Dan Asael, Stephanie L. McColl, Noah J. Planavsky: Subglacial meltwater supported aerobic marine habitats during Snowball Earth. In: PNAS. Band 116, 2019, doi:10.1073/pnas.1909165116, S. 25481–25482.
  • Henry M. Reiswig, Tanya L. Miller: Freshwater Sponge Gemmules Survive Months of Anoxia. In: Invertebrate Biology. Band 117, 1998, doi:10.2307/3226846, S. 1.
  • Daniel B. Mills, Warren R. Francis, Sergio Vargas, Morten Larsen, Coen P.H. Elemans, Donald E. Canfield, Gert Wörheide: The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. In: eLife. Band 7, 2018, Artikel Nr. 31176, doi:10.7554/eLife.31176, S. 6.
  • Daniel B. Mills, Warren R. Francis, Sergio Vargas, Morten Larsen, Coen P.H. Elemans, Donald E. Canfield, Gert Wörheide: The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. In: eLife. Band 7, 2018, Artikel Nr. 31176, doi:10.7554/eLife.31176, S. 4.
  • Louis F. Ungemach, Kerry Souza, Paul E. Fell, Stephen H. Loomis: Possession and Loss of Cold Tolerance by Sponge Gemmules: A Comparative Study. In: Invertebrate Biology. Band 116, 1997, doi:10.2307/3226918, S. 1.
  • Huw J. Griffiths, Paul Anker, Katrin Linse, Jamie Maxwell, Alexandra L. Post, Craig Stevens, Slawek Tulaczyk, James A. Smith: Breaking All the Rules: The First Recorded Hard Substrate Sessile Benthic Community Far Beneath an Antarctic Ice Shelf. In: Frontiers in Marine Science. Band 8, 2021, doi:10.3389/fmars.2021.642040, S. 6
  • Gordon D. Love, Emmanuelle Grosjean, Charlotte Stalvies, David A. Fike, John P. Grotzinger, Alexander S. Bradley, Amy E. Kelly, Maya Bhatia, William Meredith, Colin E. Snape, Samuel A. Bowring, Daniel J. Condon, Roger E. Summons: Fossil steroids record the appearance of Demospongiae during the Cryogenian period. In: Nature. Band 457, 2009, doi:10.1038/nature07673, S. 718.
  • J. Alex Zumberge, Gordon D. Love, Paco Cárdenas, Erik A. Sperling, Sunithi Gunasekera, Megan Rohrssen, Emmanuelle Grosjean, John P. Grotzinger, Roger E. Summons: Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. In: Nature Ecology & Evolution. Band 2, 2018, doi:10.1038/s41559-018-0676-2, S. 1709.
  • Benjamin J. Nettersheim, Jochen J. Brocks, Arne Schwelm, Janet M. Hope, Fabrice Not, Michael Lomas, Christiane Schmidt, Ralf Schiebel, Eva C. M. Nowack, Patrick De Deckker, Jan Pawlowski, Samuel S. Bowser, Ilya Bobrovskiy, Karin Zonneveld, Michal Kucera, Marleen Stuhr, Christian Hallmann: Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. In: Nature Ecology & Evolution. Band 3, 2019, doi:10.1038/s41559-019-0806-5, S. 577.
  • Ilya Bobrovskiy, Janet M. Hope, Benjamin J. Nettersheim, John K. Volkman, Christian Hallmann, Jochen J. Brocks: Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. In: Nature Ecology & Evolution. Brief Communications, 23. November 2020, doi:10.1038/s41559-020-01334-7.
  • Lennart M. van Maldegem, Benjamin J. Nettersheim, Arne Leider, Jochen J. Brocks, Pierre Adam, Philippe Schaeffer, Christian Hallmann: Geological alteration of Precambrian steroids mimics early animal signatures. In: Nature Ecology & Evolution. Brief Communications, 23. November 2020, doi:10.1038/s41559-020-01336-5.
  • Philip A. Allen, James L. Etienne: Sedimentary challenge to Snowball Earth. In: Nature Geoscience. Band 1, 2008, doi:10.1038/ngeo355, S. 817, 819, 824.
  • John A. Cunningham, Kelly Vargas, Zongjun Yin, Stefan Bengtson, Philip C. J. Donoghue: The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms. In: Journal of the Geological Society. Band 174, 2017, doi:10.1144/jgs2016-142, S. 793–794.
  • Shuhai Xiao, Xunlai Yuan, Andrew H. Knoll: Eumetazoan fossils in terminal Proterozoic phosphorites? In: PNAS. Band 97, 2000, doi:10.1073/pnas.250491697, S. 13684.
  • Jake V. Bailey, Samantha B. Joye, Karen M. Kalanetra, Beverly E. Flood, Frank A. Corsetti: Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. In: Nature. Band 445, 2007, doi:10.1038/nature05457, S. 198.
  • Shuhai Xiao, A.D. Muscente, Lei Chen, Chuanming Zhou, James D. Schiffbauer, Andrew D. Wood, Nicholas F. Polys, Xunlai Yuan: The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. In: National Science Review, Band 1, 2014, doi:10.1093/nsr/nwu061, S. 498.
  • Zongjun Yin, Kelly Vargas, John Cunningham, Stefan Bengtson, Maoyan Zhu, Federica Marone, Philip Donoghue: The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal-like Embryology. In: Current Biology. Band 29, 2019, doi:10.1016/j.cub.2019.10.057, S. 4307.
  • John A. Cunningham, Kelly Vargas, Zongjun Yin, Stefan Bengtson, Philip C. J. Donoghue: The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms. In: Journal of the Geological Society. Band 174, 2017, doi:10.1144/jgs2016-142, S. 798–799.
  • Zongjun Yin, Kelly Vargas, John Cunningham, Stefan Bengtson, Maoyan Zhu, Federica Marone, Philip Donoghue: The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal-like Embryology. In: Current Biology. Band 29, 2019, doi:10.1016/j.cub.2019.10.057, S. 4310, 4312.
  • vergleiche Nagayasu Nakanishi, Shunsuke Sogab, Bernard M. Degnan: Evolutionary origin of gastrulation: insights from sponge development. In: BMC Biology. Band 12, 2014, Artikel Nr. 26, doi:10.1186/1741-7007-12-26, S. 5–6.
  • Zongjun Yin, Kelly Vargas, John Cunningham, Stefan Bengtson, Maoyan Zhu, Federica Marone, Philip C.J. Donoghue: The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal-like Embryology. In: Current Biology. Band 29, 2019, doi:10.1016/j.cub.2019.10.057, S. 4309.
  • Zongjun Yin, Weichen Sun, Pengju Liu, Maoyan Zhu, Philip C.J. Donoghue: Developmental biology of Helicoforamina reveals holozoan affinity, cryptic diversity, and adaptation to heterogeneous environments in the early Ediacaran Weng’an biota (Doushantuo Formation, South China). In: Science Advances. Band 6, 2020, doi:10.1126/sciadv.abb0083, Artikel Nr. eabb0083, S. 4–5.
  • Zongjun Yin, Weichen Sun, Joachim Reitner and Maoyan Zhu: New holozoans with cellular resolution from the early Ediacaran Weng’an Biota, SW China. In: Journal of the Geological Society. Band 179, 2022, doi:10.1144/jgs2021-061, Artikel Nr. jgs2021-061, S. 8.
  • Zongjun Yin, Maoyan Zhu, Eric H. Davidson, David J. Bottjer, Fangchen Zhao, Paul Tafforeau: Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. In: PNAS. Band 112, 2015, doi:10.1073/pnas.1414577112, S. E1454–E1455.
  • Zongjun Yin, Maoyan Zhu, Eric H. Davidson, David J. Bottjer, Fangchen Zhao, Paul Tafforeau: Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. In: PNAS. Band 112, 2015, doi:10.1073/pnas.1414577112, S. E1457–E1458.
  • John A. Cunningham, Kelly Vargas, Zongjun Yin, Stefan Bengtson, Philip C. J. Donoghue: The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms. In: Journal of the Geological Society. Band 174, 2017, doi:10.1144/jgs2016-142, S. 799.
  • Heda Agić, Anette E.S. Högström, Małgorzata Moczydłowska, Sören Jensen, Teodoro Palacios, Guido Meinhold, Jan Ove R. Ebbestad, Wendy L. Taylor, Magne Høyberget: Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway. In: Scientific Reports. Band 9, Artikel Nr. 14659, doi:10.1038/s41598-019-50650-x, S. 8.
  • Chia-Wei Li, Jun-Yuan Chen, Tzu-En Hua: Precambrian Sponges with Cellular Structures. In: Science. Band 279, 1998, doi:10.1126/science.279.5352.879, S. 879.
  • Jonathan B. Antcliffe, Richard H. T. Callow, Martin D. Brasier: Giving the early fossil record of sponges a squeeze. In: Biological Reviews. Band 89, 2014, doi:10.1111/brv.12090, S. 984 (S. 13).
  • Joseph P. Botting, Lucy A. Muir: Early sponge evolution: A review and phylogenetic framework. In: Palaeoworld. Band 27, 2018, doi:10.1016/j.palwor.2017.07.001, S. 1.
  • Qing Tang, Bin Wan, Xunlai Yuan, A.D. Muscente, Shuhai Xiao: Spiculogenesis and biomineralization in early sponge animals. In: Nature Communications. Band 10, 2019, Artikel Nr. 3348, doi:10.1038/s41467-019-11297-4, S. 2, 6–7, 9.
  • Shan Chang, Lei Zhang, Sébastien Clausen, David J. Bottjer, Qinglai Feng: The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems. In: Precambrian Research. Band 333, 2019, Artikel Nr. 105438, doi:10.1016/j.precamres.2019.105438, S. 1.
  • Xiaopeng Wang, Alexander G. Liu, Zhe Chen, Chengxi Wu, Yarong Liu, Bin Wan, Ke Pang, Chuanming Zhou, Xunlai Yuan, Shuhai Xiao: A late-Ediacaran crown-group sponge animal. In: In: Nature. Band 630, 2024, doi:10.1038/s41586-024-07520-y, S. 905–911.
  • Jonathan B. Antcliffe, Richard H. T. Callow, Martin D. Brasier: Giving the early fossil record of sponges a squeeze. In: Biological Reviews. Band 89, 2014, doi:10.1111/brv.12090, S. 974 (S. 3).
  • Thomas Cavalier-Smith: Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. In: Philosophical Transactions of the Royal Society B. Band 372, 2017, doi:10.1098/rstb.2015.0476, Artikel Nr. 20150476, S. 7.
  • Bernd Schierwater, Michael Eitel, Wolfgang Jakob, Hans-Jürgen Osigus, Heike Hadrys, Stephen L. Dellaporta, Sergios-Orestis Kolokotronis, Rob DeSalle: Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis. In: PLoS Biology. Band 7, 2009, Artikel Nr. e1000020, doi:10.1371/journal.pbio.1000020, S. 40–42.
  • Claus Nielsen Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?. In: BMC Evolutionary Biology. Band 13, 2013, Artikel Nr. 171, doi:10.1186/1471-2148-13-171, S. 14–15.
  • Claus Nielsen: Early animal evolution: A morphologist's view. In: Royal Society Open Science. Band 6, 2019, Artikel Nr. 190638, doi:10.1098/rsos.190638, S. 4, 6.
  • Shuhai Xiao, Xunlai Yuan, Andrew H. Knoll: Eumetazoan fossils in terminal Proterozoic phosphorites? In: PNAS. Band 97, 2000, doi:10.1073/pnas.250491697, S. 13687–13688.
  • John A. Cunningham, Kelly Vargas, Liu Pengju, Veneta Belivanova, Federica Marone, Carlos Martínez-Pérez, Manuel Guizar-Sicairos, Mirko Holler, Stefan Bengtson, Philip C. J. Donoghue: Critical appraisal of tubular putative metazoans from the Ediacaran Weng’an Dushantuo biota. In: Proceedings of the Royal Society of London • Series B. Band 282. 2015, doi:10.1098/rspb.2015.1169, S. 7–8.
  • Alexander G. Liu, Jack J. Matthews, Latha R. Menon, Duncan McIlroy and Martin D. Brasier: Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). In: Proceedings of the Royal Society of London • Series B. Band 281, 2014, doi:10.1098/rspb.2014.1202, S. 1–7.
  • Scott D. Evans, Ian V. Hughes, James G. Gehling, and Mary L. Droser: Discovery of the oldest bilaterian from the Ediacaran of South Australia. In: PNAS. Band 117, 2020, doi:10.1073/pnas.2001045117, S. 7845.
  • Shuhai Xiao, Marc Laflamme: On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. In: Trends in Ecology and Evolution. Band 24, 2009, doi:10.1016/j.tree.2008.07.015, S. 34.
  • Graham E. Budd, Maximilian J. Telford: The origin and evolution of arthropods. In: Nature. Band 457, 2009, doi:10.1038/nature07890, S. 814.
  • Ilya Bobrovskiy, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, Jochen J. Brocks: Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. In: Science, Band 361, 2018, doi:10.1126/science.aat7228, S. 1248.
  • John A. Cunningham, Alexander G. Liu, Stefan Bengtson, Philip C. J. Donoghue: The origin of animals: Can molecular clocks and the fossil record be reconciled? In: BioEssays. Band 39, 2016, doi:10.1002/bies.201600120, S. 5.
  • Amy J. Shore, Rachel A. Wood, Ian B. Butler, Andrey Yu. Zhuravlev, Sean McMahon, Alexandra Curtis, Fred T. Bowyer: Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion. In: Science Advances. Band 7, 2021, Artikel Nr. eabf2933, doi:10.1126/sciadv.abf2933, S. 1.
  • Roger E. Summons, Douglas H. Erwin: Chemical clues to the earliest animal fossils. In: Science. Band 361, 2018, doi:10.1126/science.aau9710, S. 1198–1199.
  • Erik A. Sperling, Jakob Vinther: A placozoan affinity for Dickinsonia and the evolution of the late Proterozoic metazoan feeding modes. In: Evolution and Development. Band 12, 2010, doi:10.1111/j.1525-142X.2010.00404.x, S. 201.
  • Ziyi Zhu, Ian H. Campbell, Charlotte M. Allen, Jochen J. Brocks, Bei Chen: The temporal distribution of Earth's supermountains and their potential link to the rise of atmospheric oxygen and biological evolution. In: Earth and Planetary Science Letters. Band 580, Artikel Nr. 117391, doi:10.1016/j.epsl.2022.117391, S. 1.
  • Richard J. Squire, Ian H. Campbell, Charlotte M. Allen, Christopher J. L. Wilson: Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?. In: Earth and Planetary Science Letters. Band 250, 2006, doi:10.1016/j.epsl.2006.07.032, S. 116.
  • Joshua J. Williams, Benjamin J. W. Mills, Timothy M. Lenton: A tectonically driven Ediacaran oxygenation event. In: Nature Communications. Band 10, 2019, Artikel Nr. 2690, doi:10.1038/s41467-019-10286-x, S. 1.
  • Feifei Zhang, Shuhai Xiao, Brian Kendall, Stephen J. Romaniello, Huan Cui, Mike Meyer, Geoffrey J. Gilleaudeau, Alan J. Kaufman, Ariel D. Anbar: Extensive marine anoxia during the terminal Ediacaran Period. In: Science Advances. Band 4, 2018, Artikel Nr. eaan8983, doi:10.1126/sciadv.aan8983, S. 1, 7.
  • Scott D. Evans, Chenyi Tu, Adriana Rizzo, Rachel L. Surprenant, Phillip C. Boan, Heather McCandless, Nathan Marshall, Shuhai Xiao, Mary L. Droser: Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition. In: PNAS. Band 119, 2022, doi:10.1073/pnas.2207475119, Artikel Nr. e2207475119, S. 1.
  • Xingliang Zhang, Degan Shu: Current understanding on the Cambrian Explosion: questions and answers. In: Paläontologische Zeitschrift. Band 95, 2021, doi:10.1007/s12542-021-00568-5, S. 648, 650–651.

google.de

books.google.de

harvard.edu

ui.adsabs.harvard.edu

jstor.org

  • Thomas Henry Huxley: On the Classification of the Animal Kingdom. In: The American Naturalist. Band 09, 1875, S. 67 (Digitalisat).

nih.gov

ncbi.nlm.nih.gov