Delaunay-Triangulierung (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Delaunay-Triangulierung" in German language version.

refsWebsite
Global rank German rank
9,965th place
low place
low place
low place
2nd place
3rd place
610th place
521st place
7,479th place
853rd place
1,880th place
4,460th place
1st place
1st place
69th place
189th place

arxiv.org

  • Hai-Chau Chang, Lih-Chung Wang: A Simple Proof of Thue's Theorem on Circle Packing. 2010, arxiv:1009.4322.

doi.org

  • Jianwei Guo, Dong-Ming Yan, Li Chen, Xiaopeng Zhang, Oliver Deussen: Tetrahedral meshing via maximal Poisson-disk sampling. In: Computer Aided Geometric Design. Band 43, März 2016, 4. Tetrahedral Meshing, S. 186–199, doi:10.1016/j.cagd.2016.02.004 (elsevier.com [abgerufen am 4. Juli 2020]): „In 3D, even well-spaced vertices could create degenerate 3D elements (e.g., slivers).“

duke.edu

courses.cs.duke.edu

elsevier.com

linkinghub.elsevier.com

  • Jianwei Guo, Dong-Ming Yan, Li Chen, Xiaopeng Zhang, Oliver Deussen: Tetrahedral meshing via maximal Poisson-disk sampling. In: Computer Aided Geometric Design. Band 43, März 2016, 4. Tetrahedral Meshing, S. 186–199, doi:10.1016/j.cagd.2016.02.004 (elsevier.com [abgerufen am 4. Juli 2020]): „In 3D, even well-spaced vertices could create degenerate 3D elements (e.g., slivers).“

mathunion.org

  • Boris N. Delaunay: Sur la sphère vide. In: J. C. Fields (Hgg.): Proceedings of the International Mathematical Congress held in Toronto, August 11-16, 1924. Toronto: University Press, 1928, Bd. 1, S. 695–700. Auch in: Bulletin of Academy of Sciences of the USSR. 7 (1934), Nr. 6, S. 793–800.

tu-berlin.de

page.math.tu-berlin.de

web.archive.org

zcu.cz

kiv.zcu.cz