Marie-Odile Soyer-Gobillard: Edouard Chatton (1883–1947) and the dinoflagellate protists: concepts and models. In: International Microbiology. Band 9, 2006, S. 173–177. (pdf) (Memento des Originals vom 24. Dezember 2015 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/revistes.iec.cat
Sina M. Adl, David Bass, Christopher E. Lane, Julius Lukeš, Conrad L. Schoch, Alexey Smirnov, Sabine Agatha, Cedric Berney, Matthew W. Brown, Fabien Burki, Paco Cárdenas, Ivan Čepička, Lyudmila Chistyakova, Javier del Campo, Micah Dunthorn, Bente Edvardsen, Yana Eglit, Laure Guillou, Vladimír Hampl, Aaron A. Heiss, Mona Hoppenrath, Timothy Y. James, Anna Karnkowska, Sergey Karpov, Eunsoo Kim, Martin Kolisko, Alexander Kudryavtsev, Daniel J. G. Lahr, Enrique Lara, Line le Gall, Denis H. Lynn, David G. Mann, Ramon Massana, Edward A. D. Mitchell, Christine Morrow, Jong Soo Park, Jan W. Pawlowski, Martha J. Powell, Daniel J. Richter, Sonja Rueckert, Laura Shadwick, Satoshi Shimano, Frederick W. Spiegel, Guifré Torruella, Noha Youssef, Vasily Zlatogursky, Qianqian Zhang: Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. In: The Journal of Eukaryotic Microbiology. Band 66, Nr. 1, 26. September 2018; doi:10.1111/jeu.12691, ISSN1550-7408, ISSN1066-5234, S. 4–119 (englisch; PDF-Datei, 1,49 MB, in der Wiley Online Library von John Wiley & Sons, Inc.).
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Romain Derelle, Guifré Torruella, Vladimír Klimeš, Henner Brinkmann, Eunsoo Kim, Čestmír Vlček, B. Franz Lang, Marek Eliáš: Bacterial proteins pinpoint a single eukaryotic root. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.7, 17. Februar 2015, ISSN0027-8424, S.E693–E699, doi:10.1073/pnas.1420657112, PMID 25646484, PMC 4343179 (freier Volltext) – (englisch, pnas.org).
Thomas Cavalier-Smith, Ema E.Chao, Elizabeth A.Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis: Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. In: Molecular Phylogenetics & Evolution. 81. Jahrgang, Dezember 2014, S.71–8 5, doi:10.1016/j.ympev.2014.08.012 (sciencedirect.com).
Ding He, Omar Fiz-Palacios, Cheng-Jie Fu, Johanna Fehling, Chun-Chieh Tsai, Sandra L. Baldauf: An Alternative Root for the Eukaryote Tree of Life. In: Current Biology. 24. Jahrgang, Nr.4, S.465–470, doi:10.1016/j.cub.2014.01.036.
Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano: A new view of the tree of life. In: Nature Microbiology. 1. Jahrgang, Nr.5, 11. April 2016, ISSN2058-5276, doi:10.1038/nmicrobiol.2016.48 (englisch, nature.com).
Thomas Cavalier-Smith: Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. In: Protoplasma. 5. September 2017, ISSN0033-183X, S.1–61, doi:10.1007/s00709-017-1147-3 (englisch).
Thomas Cavalier-Smith: Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: semi-conservative microtubule/strip duplication, strip shaping and transformation. In: European Journal of Protistology. Oktober 2017, doi:10.1016/j.ejop.2017.09.002 (elsevier.com).
Eugene V. Koonin: Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.52, 29. Dezember 2015, S.15777–15778, doi:10.1073/pnas.1520869112 (pnas.org).
Hiroyuki Imachi, Masaru K. Nobu, Nozomi Nakahara, Yuki Morono, Miyuki Ogawara, Yoshihiro Takaki, Yoshinori Takano, Katsuyuki Uematsu, Tetsuro Ikuta, Motoo Ito, Yohei Matsui, Masayuki Miyazaki, Kazuyoshi Murata, Yumi Saito, Sanae Sakai, Chihong Song, Eiji Tasumi, Yuko Yamanaka, Takashi Yamaguchi, Yoichi Kamagata, Hideyuki Tamaki & Ken Takai: Isolation of an archaeon at the prokaryote–eukaryote interface. In: Nature. Band577, 2020, S.519–525, doi:10.1038/s41586-019-1916-6.
Elizabeth Pennisi: Tentacled microbe hints at how simple cells became complex. In: Science, Band 365, Nr. 6454, 16. August 2019, S. 631; doi:10.1126/science.365.6454.631, PMID 31416944.
Purificación López-García, David Moreira: The Syntrophy hypothesis for the origin of eukaryotes revisited. In: Nature Microbiology, Band 5, 17. April 2020, S. 655–667; doi:10.1038/s41564-020-0710-4, PMID 32341569, Epub 27. April 2020.
Purificación López-García, David Moreira: The Syntrophy hypothesis for the origin of eukaryotes revisited. In: Nature Microbiology, Band 5, 17. April 2020, S. 655–667; doi:10.1038/s41564-020-0710-4, PMID 32341569, Epub 27. April 2020.
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Julian Vosseberg, Jolien J. E. van Hooff, Marina Marcet-Houben, Anne van Vlimmeren, Leny M. van Wijk, Toni Gabaldón, Berend Snel: Timing the origin of eukaryotic cellular complexity with ancient duplications. In: Nature Ecology & Evolution, 26. Oktober 2020, doi:10.1038/s41559-020-01320-z. Dazu: Timeline Unveiled for One of the Most Important and Puzzling Events in the Evolution of Life, auf: SciTechDaily vom 4. November 2020, Quelle: Institute for Research in Biomedicine (IRB Barcelona) – ‚Bakterien‘ ist hier im Sinn von ‚Prokaryoten‘ zu verstehen.
Stuart A. Ralph, Bernardo J. Foth, Neil Hall, Geoffrey I. McFadden: Evolutionary Pressures on Apicoplast Transit Peptides. In: Molecular Biology and Evolution. 21. Jahrgang, Nr.12, Dezember 2004, S.2183–2191, doi:10.1093/molbev/msh233, PMID 15317876 (oup.com).
John M. Archibald: The eocyte hypothesis and the origin of eukaryotic cells. In: PNAS. 105. Jahrgang, Nr.51, 23. Dezember 2008, S.20049–20050, doi:10.1073/pnas.0811118106 (pnas.org [abgerufen am 5. Oktober 2012]).
James A. Lake, Eric Henderson, Melanie Oakes, Michael W. Clark: Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. In: PNAS. 81. Jahrgang, Nr.12, Juni 1984, S.3786–3790, doi:10.1073/pnas.81.12.3786, PMID 6587394, PMC 345305 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
Steve Kelly, B. Wickstead, K. Gull: Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. In: Proceedings of the Royal Society B. 278. Jahrgang, 2011, S.1009–1018, doi:10.1098/rspb.2010.1427, PMID 20880885, PMC 3049024 (freier Volltext) – (englisch, stevekelly.eu (Memento des Originals vom 3. März 2016 im Internet Archive) [abgerufen am 18. Dezember 2022]).
Anthony M. Poole, Nadja Neumann: Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. In: Research in Microbiology. 162. Jahrgang, 2011, S.71–76, doi:10.1016/j.resmic.2010.10.002 (nordita.org [PDF; abgerufen am 5. Oktober 2012]).
Lionel Guy, Thijs J. G. Ettema: The archaeal 'TACK' superphylum and the origin of eukaryotes. In: Trends in Microbiology. 19. Jahrgang, Nr.12, Dezember 2011, S.580–587, doi:10.1016/j.tim.2011.09.002, PMID 22018741 (sciencedirect.com [abgerufen am 5. Oktober 2012]).
Cymon J. Cox, Peter G. Foster, Robert P. Hirt, Simon R. Harris, T. Martin Embley: The archaebacterial origin of eukaryotes. In: PNAS. 105. Jahrgang, 23. Dezember 2008, S.20356–20361, doi:10.1073/pnas.0810647105, PMID 19073919, PMC 2629343 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
Katarzyna Zaremba-Niedzwiedzka, Eva F. Cáceres, Jimmy H. Saw, Disa Bäckström, Lina Juzokaite, Emmelien Vancaester, Kiley W. Seitz, Karthik Anantharaman, Piotr Starnawski, Kasper U. Kjeldsen, Matthew B. Stott, Takuro Nunoura, Jillian F. Banfield, Andreas Schramm, Brett J. Baker, Anja Spang, Thijs J. G. Ettema: Asgard archaea illuminate the origin of eukaryotic cellular complexity. In: Nature, Band 541, S. 353–358, 19. Januar 2017; doi:10.1038/nature21031.
Regina Saum, Katharina Schlegel, Benjamin Meyer, Volker Müller: The F1FO ATP synthase genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis. In: FEMS Microbiology Letters, Band 300, Nr. 2, November 2009, S. 230–236; doi:10.1111/j.1574-6968.2009.01785.x.
Armen Y. Mulkidjanian, Michael Y. Galperin, Kira S. Makarova, Yuri I. Wolf, Eugene V. Koonin: Evolutionary primacy of sodium bioenergetics. In: Biology Direct. 3. Jahrgang, Nr.13, 2008, doi:10.1186/1745-6150-3-13 (englisch).
Armen Y. Mulkidjanian, Kira S. Makarova, Michael Y. Galperin, Eugene V. Koonin: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. In: Nature Reviews Microbiology. 5. Jahrgang, Nr.11, 2007, S.892–899, doi:10.1038/nrmicro1767 (nature.com [PDF]).PDF (via Universität Osnabrück), Memento im Webarchiv vom 31. Oktober 2008.
elsevier.com
linkinghub.elsevier.com
Thomas Cavalier-Smith: Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: semi-conservative microtubule/strip duplication, strip shaping and transformation. In: European Journal of Protistology. Oktober 2017, doi:10.1016/j.ejop.2017.09.002 (elsevier.com).
Bram Henneman: Histone-DNA assemblies in archaea: shaping the genome on the edge of life. Leiden University Repository, 4. Dezember 2019; hdl:1887/81191. Hier: Kapitel 1: Introduction (englisch). Siehe Fig. 1.1.
harvard.edu
ui.adsabs.harvard.edu
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Marie-Odile Soyer-Gobillard: Edouard Chatton (1883–1947) and the dinoflagellate protists: concepts and models. In: International Microbiology. Band 9, 2006, S. 173–177. (pdf) (Memento des Originals vom 24. Dezember 2015 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/revistes.iec.cat
Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano: A new view of the tree of life. In: Nature Microbiology. 1. Jahrgang, Nr.5, 11. April 2016, ISSN2058-5276, doi:10.1038/nmicrobiol.2016.48 (englisch, nature.com).
Armen Y. Mulkidjanian, Kira S. Makarova, Michael Y. Galperin, Eugene V. Koonin: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. In: Nature Reviews Microbiology. 5. Jahrgang, Nr.11, 2007, S.892–899, doi:10.1038/nrmicro1767 (nature.com [PDF]).PDF (via Universität Osnabrück), Memento im Webarchiv vom 31. Oktober 2008.
nih.gov
ncbi.nlm.nih.gov
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Romain Derelle, Guifré Torruella, Vladimír Klimeš, Henner Brinkmann, Eunsoo Kim, Čestmír Vlček, B. Franz Lang, Marek Eliáš: Bacterial proteins pinpoint a single eukaryotic root. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.7, 17. Februar 2015, ISSN0027-8424, S.E693–E699, doi:10.1073/pnas.1420657112, PMID 25646484, PMC 4343179 (freier Volltext) – (englisch, pnas.org).
Elizabeth Pennisi: Tentacled microbe hints at how simple cells became complex. In: Science, Band 365, Nr. 6454, 16. August 2019, S. 631; doi:10.1126/science.365.6454.631, PMID 31416944.
Purificación López-García, David Moreira: The Syntrophy hypothesis for the origin of eukaryotes revisited. In: Nature Microbiology, Band 5, 17. April 2020, S. 655–667; doi:10.1038/s41564-020-0710-4, PMID 32341569, Epub 27. April 2020.
Purificación López-García, David Moreira: The Syntrophy hypothesis for the origin of eukaryotes revisited. In: Nature Microbiology, Band 5, 17. April 2020, S. 655–667; doi:10.1038/s41564-020-0710-4, PMID 32341569, Epub 27. April 2020.
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Vorrapon Chaikeeratisak, Katrina Nguyen, Kanika Khanna, Axel F. Brilot, Marcella L. Erb, Joanna K. C. Coker, Anastasia Vavilina, Gerald L. Newton, Robert Buschauer, K. Pogliano, E. Villa, D. A. Agard, Joe Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria. In: Science. 355. Jahrgang, Nr.6321, 13. Januar 2017, S.194–197, doi:10.1126/science.aal2130, PMID 28082593, PMC 6028185 (freier Volltext), bibcode:2017Sci...355..194C.
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Vorrapon Chaikeeratisak, Katrina Nguyen, M. E. Egan, Marcella L. Erb, Anastasia Vavilina, Joe Pogliano: The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. In: Cell Reports. 20. Jahrgang, Nr.7, 15. August 2017, S.1563–1571, doi:10.1016/j.celrep.2017.07.064, PMID 28813669, PMC 6028189 (freier Volltext).
Stuart A. Ralph, Bernardo J. Foth, Neil Hall, Geoffrey I. McFadden: Evolutionary Pressures on Apicoplast Transit Peptides. In: Molecular Biology and Evolution. 21. Jahrgang, Nr.12, Dezember 2004, S.2183–2191, doi:10.1093/molbev/msh233, PMID 15317876 (oup.com).
James A. Lake, Eric Henderson, Melanie Oakes, Michael W. Clark: Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. In: PNAS. 81. Jahrgang, Nr.12, Juni 1984, S.3786–3790, doi:10.1073/pnas.81.12.3786, PMID 6587394, PMC 345305 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
Steve Kelly, B. Wickstead, K. Gull: Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. In: Proceedings of the Royal Society B. 278. Jahrgang, 2011, S.1009–1018, doi:10.1098/rspb.2010.1427, PMID 20880885, PMC 3049024 (freier Volltext) – (englisch, stevekelly.eu (Memento des Originals vom 3. März 2016 im Internet Archive) [abgerufen am 18. Dezember 2022]).
Lionel Guy, Thijs J. G. Ettema: The archaeal 'TACK' superphylum and the origin of eukaryotes. In: Trends in Microbiology. 19. Jahrgang, Nr.12, Dezember 2011, S.580–587, doi:10.1016/j.tim.2011.09.002, PMID 22018741 (sciencedirect.com [abgerufen am 5. Oktober 2012]).
Cymon J. Cox, Peter G. Foster, Robert P. Hirt, Simon R. Harris, T. Martin Embley: The archaebacterial origin of eukaryotes. In: PNAS. 105. Jahrgang, 23. Dezember 2008, S.20356–20361, doi:10.1073/pnas.0810647105, PMID 19073919, PMC 2629343 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
Anthony M. Poole, Nadja Neumann: Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. In: Research in Microbiology. 162. Jahrgang, 2011, S.71–76, doi:10.1016/j.resmic.2010.10.002 (nordita.org [PDF; abgerufen am 5. Oktober 2012]).
oup.com
academic.oup.com
Stuart A. Ralph, Bernardo J. Foth, Neil Hall, Geoffrey I. McFadden: Evolutionary Pressures on Apicoplast Transit Peptides. In: Molecular Biology and Evolution. 21. Jahrgang, Nr.12, Dezember 2004, S.2183–2191, doi:10.1093/molbev/msh233, PMID 15317876 (oup.com).
pnas.org
Romain Derelle, Guifré Torruella, Vladimír Klimeš, Henner Brinkmann, Eunsoo Kim, Čestmír Vlček, B. Franz Lang, Marek Eliáš: Bacterial proteins pinpoint a single eukaryotic root. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.7, 17. Februar 2015, ISSN0027-8424, S.E693–E699, doi:10.1073/pnas.1420657112, PMID 25646484, PMC 4343179 (freier Volltext) – (englisch, pnas.org).
Eugene V. Koonin: Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.52, 29. Dezember 2015, S.15777–15778, doi:10.1073/pnas.1520869112 (pnas.org).
John M. Archibald: The eocyte hypothesis and the origin of eukaryotic cells. In: PNAS. 105. Jahrgang, Nr.51, 23. Dezember 2008, S.20049–20050, doi:10.1073/pnas.0811118106 (pnas.org [abgerufen am 5. Oktober 2012]).
James A. Lake, Eric Henderson, Melanie Oakes, Michael W. Clark: Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. In: PNAS. 81. Jahrgang, Nr.12, Juni 1984, S.3786–3790, doi:10.1073/pnas.81.12.3786, PMID 6587394, PMC 345305 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
Cymon J. Cox, Peter G. Foster, Robert P. Hirt, Simon R. Harris, T. Martin Embley: The archaebacterial origin of eukaryotes. In: PNAS. 105. Jahrgang, 23. Dezember 2008, S.20356–20361, doi:10.1073/pnas.0810647105, PMID 19073919, PMC 2629343 (freier Volltext) – (pnas.org [abgerufen am 5. Oktober 2012]).
redirecter.toolforge.org
Marie-Odile Soyer-Gobillard: Edouard Chatton (1883–1947) and the dinoflagellate protists: concepts and models. In: International Microbiology. Band 9, 2006, S. 173–177. (pdf) (Memento des Originals vom 24. Dezember 2015 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/revistes.iec.cat
Steve Kelly, B. Wickstead, K. Gull: Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. In: Proceedings of the Royal Society B. 278. Jahrgang, 2011, S.1009–1018, doi:10.1098/rspb.2010.1427, PMID 20880885, PMC 3049024 (freier Volltext) – (englisch, stevekelly.eu (Memento des Originals vom 3. März 2016 im Internet Archive) [abgerufen am 18. Dezember 2022]).
Thomas Cavalier-Smith, Ema E.Chao, Elizabeth A.Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis: Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. In: Molecular Phylogenetics & Evolution. 81. Jahrgang, Dezember 2014, S.71–8 5, doi:10.1016/j.ympev.2014.08.012 (sciencedirect.com).
Lionel Guy, Thijs J. G. Ettema: The archaeal 'TACK' superphylum and the origin of eukaryotes. In: Trends in Microbiology. 19. Jahrgang, Nr.12, Dezember 2011, S.580–587, doi:10.1016/j.tim.2011.09.002, PMID 22018741 (sciencedirect.com [abgerufen am 5. Oktober 2012]).
Julian Vosseberg, Jolien J. E. van Hooff, Marina Marcet-Houben, Anne van Vlimmeren, Leny M. van Wijk, Toni Gabaldón, Berend Snel: Timing the origin of eukaryotic cellular complexity with ancient duplications. In: Nature Ecology & Evolution, 26. Oktober 2020, doi:10.1038/s41559-020-01320-z. Dazu: Timeline Unveiled for One of the Most Important and Puzzling Events in the Evolution of Life, auf: SciTechDaily vom 4. November 2020, Quelle: Institute for Research in Biomedicine (IRB Barcelona) – ‚Bakterien‘ ist hier im Sinn von ‚Prokaryoten‘ zu verstehen.
Bram Henneman: Histone-DNA assemblies in archaea: shaping the genome on the edge of life. Leiden University Repository, 4. Dezember 2019; hdl:1887/81191. Hier: Kapitel 1: Introduction (englisch). Siehe Fig. 1.1.
web.archive.org
Marie-Odile Soyer-Gobillard: Edouard Chatton (1883–1947) and the dinoflagellate protists: concepts and models. In: International Microbiology. Band 9, 2006, S. 173–177. (pdf) (Memento des Originals vom 24. Dezember 2015 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/revistes.iec.cat
Steve Kelly, B. Wickstead, K. Gull: Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. In: Proceedings of the Royal Society B. 278. Jahrgang, 2011, S.1009–1018, doi:10.1098/rspb.2010.1427, PMID 20880885, PMC 3049024 (freier Volltext) – (englisch, stevekelly.eu (Memento des Originals vom 3. März 2016 im Internet Archive) [abgerufen am 18. Dezember 2022]).
Armen Y. Mulkidjanian, Kira S. Makarova, Michael Y. Galperin, Eugene V. Koonin: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. In: Nature Reviews Microbiology. 5. Jahrgang, Nr.11, 2007, S.892–899, doi:10.1038/nrmicro1767 (nature.com [PDF]).PDF (via Universität Osnabrück), Memento im Webarchiv vom 31. Oktober 2008.
wiley.com
onlinelibrary.wiley.com
Sina M. Adl, David Bass, Christopher E. Lane, Julius Lukeš, Conrad L. Schoch, Alexey Smirnov, Sabine Agatha, Cedric Berney, Matthew W. Brown, Fabien Burki, Paco Cárdenas, Ivan Čepička, Lyudmila Chistyakova, Javier del Campo, Micah Dunthorn, Bente Edvardsen, Yana Eglit, Laure Guillou, Vladimír Hampl, Aaron A. Heiss, Mona Hoppenrath, Timothy Y. James, Anna Karnkowska, Sergey Karpov, Eunsoo Kim, Martin Kolisko, Alexander Kudryavtsev, Daniel J. G. Lahr, Enrique Lara, Line le Gall, Denis H. Lynn, David G. Mann, Ramon Massana, Edward A. D. Mitchell, Christine Morrow, Jong Soo Park, Jan W. Pawlowski, Martha J. Powell, Daniel J. Richter, Sonja Rueckert, Laura Shadwick, Satoshi Shimano, Frederick W. Spiegel, Guifré Torruella, Noha Youssef, Vasily Zlatogursky, Qianqian Zhang: Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. In: The Journal of Eukaryotic Microbiology. Band 66, Nr. 1, 26. September 2018; doi:10.1111/jeu.12691, ISSN1550-7408, ISSN1066-5234, S. 4–119 (englisch; PDF-Datei, 1,49 MB, in der Wiley Online Library von John Wiley & Sons, Inc.).
zdb-katalog.de
Sina M. Adl, David Bass, Christopher E. Lane, Julius Lukeš, Conrad L. Schoch, Alexey Smirnov, Sabine Agatha, Cedric Berney, Matthew W. Brown, Fabien Burki, Paco Cárdenas, Ivan Čepička, Lyudmila Chistyakova, Javier del Campo, Micah Dunthorn, Bente Edvardsen, Yana Eglit, Laure Guillou, Vladimír Hampl, Aaron A. Heiss, Mona Hoppenrath, Timothy Y. James, Anna Karnkowska, Sergey Karpov, Eunsoo Kim, Martin Kolisko, Alexander Kudryavtsev, Daniel J. G. Lahr, Enrique Lara, Line le Gall, Denis H. Lynn, David G. Mann, Ramon Massana, Edward A. D. Mitchell, Christine Morrow, Jong Soo Park, Jan W. Pawlowski, Martha J. Powell, Daniel J. Richter, Sonja Rueckert, Laura Shadwick, Satoshi Shimano, Frederick W. Spiegel, Guifré Torruella, Noha Youssef, Vasily Zlatogursky, Qianqian Zhang: Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. In: The Journal of Eukaryotic Microbiology. Band 66, Nr. 1, 26. September 2018; doi:10.1111/jeu.12691, ISSN1550-7408, ISSN1066-5234, S. 4–119 (englisch; PDF-Datei, 1,49 MB, in der Wiley Online Library von John Wiley & Sons, Inc.).
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Max E. Schön, Vasily V. Zlatogursky, Rohan P. Singh, Camille Poirier, Susanne Wilken, Varsha Mathur, Jürgen F. H. Strassert, Jarone Pinhassi, Alexandra Z. Worden, Patrick J. Keeling, Thijs J. G. Ettema, Jeremy G. Wideman, Fabien Burki: Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. In: Nature Communications. Band 12: 6651, 17. November 2021, doi:10.1038/s41467-021-26918-0, PMID 34789758, PMC 8599508 (freier Volltext), ISSN2041-1723 (englisch)
Romain Derelle, Guifré Torruella, Vladimír Klimeš, Henner Brinkmann, Eunsoo Kim, Čestmír Vlček, B. Franz Lang, Marek Eliáš: Bacterial proteins pinpoint a single eukaryotic root. In: Proceedings of the National Academy of Sciences. 112. Jahrgang, Nr.7, 17. Februar 2015, ISSN0027-8424, S.E693–E699, doi:10.1073/pnas.1420657112, PMID 25646484, PMC 4343179 (freier Volltext) – (englisch, pnas.org).
Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano: A new view of the tree of life. In: Nature Microbiology. 1. Jahrgang, Nr.5, 11. April 2016, ISSN2058-5276, doi:10.1038/nmicrobiol.2016.48 (englisch, nature.com).
Thomas Cavalier-Smith: Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. In: Protoplasma. 5. September 2017, ISSN0033-183X, S.1–61, doi:10.1007/s00709-017-1147-3 (englisch).