Nantiwat Pholdee, Sujin Bureerat: Multiobjective Trajectory Planning of a 6D Robot based on Multiobjective Meta Heuristic Search. ACM, 2018, ISBN 978-1-4503-6553-6, S.352–356, doi:10.1145/3301326.3301356 (acm.org [abgerufen am 15. September 2024]).
arxiv.org
Wilfried Jakob: Applying Evolutionary Algorithms Successfully - A Guide Gained from Real-world Applications. KIT Scientific Working Papers, Nr.170. KIT Scientific Publishing, 2021, ISSN2194-1629, doi:10.5445/IR/1000135763, arxiv:2107.11300 (englisch, kit.edu).
bl.uk
ethos.bl.uk
Natalio Krasnogor: Studies on the Theory and Design Space of Memetic Algorithms. Dissertation. University of the West of England, Bristol, UK 2002, S.23 (englisch, bl.uk).
darwin-online.org.uk
Charles Darwin: The Origin of Species by Means of Natural Selection. 6. Auflage. John Murray, London 1872 (englisch, org.uk).
doi.org
Cecilia Di Chio et al.: Applications of Evolutionary Computation: EvoApplications 2012. LNCS 7248, Springer, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-29178-4
Ian C. Parmee: Strategies for the Integration of Evolutionary/Adaptive Search with the Engineering Design Process. In: Dipankar Dasgupta, Zbigniew Michalewicz (Hrsg.): Evolutionary Algorithms in Engineering Applications. Springer Berlin Heidelberg, Berlin, Heidelberg 1997, ISBN 3-642-08282-3, S.453–477, doi:10.1007/978-3-662-03423-1_25.
Christian Blume: Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM. In: Real-World Applications of Evolutionary Computing. LNCS 1803. Springer, Berlin, Heidelberg 2000, ISBN 3-540-67353-9, S.330–341, doi:10.1007/3-540-45561-2_32.
A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing (= Natural Computing Series). 2. Auflage. Springer, Berlin, Heidelberg 2015, ISBN 978-3-662-44873-1, What Is an Evolutionary Algorithm?, S.25–28, S. 26, Fig. 3.1, doi:10.1007/978-3-662-44874-8.
Heikki Maaranen, Kaisa Miettinen, Antti Penttinen: On initial populations of a genetic algorithm for continuous optimization problems. In: Journal of Global Optimization. Band37, Nr.3, 23. Januar 2007, ISSN0925-5001, S.405–436, doi:10.1007/s10898-006-9056-6 (researchgate.net [abgerufen am 1. Oktober 2023]).
Borhan Kazimipour, Xiaodong Li, A. K. Qin: A review of population initialization techniques for evolutionary algorithms. IEEE, 2014, ISBN 978-1-4799-1488-3, S.2585–2592, doi:10.1109/CEC.2014.6900618 (ieee.org [abgerufen am 1. Oktober 2023]).
Wilfried Jakob: HyGLEAM–An Approach to Generally Applicable Hybridization of Evolutionary Algorithms. In: Parallel Problem Solving from Nature — PPSN VII. Band2439. Springer, Berlin, Heidelberg 2002, ISBN 3-540-44139-5, S.527–536, doi:10.1007/3-540-45712-7_51 (researchgate.net [abgerufen am 1. Oktober 2023]).
Muhanad Tahrir Younis, Shengxiang Yang, Benjamin Passow: Meta-Heuristically Seeded Genetic Algorithm for Independent Job Scheduling in Grid Computing. In: Applications of Evolutionary Computation. Band10199. Springer International Publishing, Cham 2017, ISBN 978-3-319-55848-6, S.177–189, doi:10.1007/978-3-319-55849-3_12.
Tobias Friedrich, Markus Wagner: Seeding the initial population of multi-objective evolutionary algorithms: A computational study. In: Applied Soft Computing. Band33, August 2015, S.223–230, doi:10.1016/j.asoc.2015.04.043 (elsevier.com [abgerufen am 1. Oktober 2023]).
Musrrat Ali, Millie Pant, Ajith Abraham: Unconventional initialization methods for differential evolution. In: Applied Mathematics and Computation. Band219, Nr.9, Januar 2013, S.4474–4494, doi:10.1016/j.amc.2012.10.053 (elsevier.com [abgerufen am 1. Oktober 2023]).
Borhan Kazimipour, Xiaodong Li, A. K. Qin: Initialization methods for large scale global optimization. In: IEEE Congress on Evolutionary Computation. 2013, S.2750–2757, doi:10.1109/CEC.2013.6557902 (ieee.org).
Thomas Bäck, Hans-Paul Schwefel: An Overview of Evolutionary Algorithms for Parameter Optimization. In: Evolutionary Computation. Band1, Nr.1, März 1993, ISSN1063-6560, S.1–23, S. 5, doi:10.1162/evco.1993.1.1.1 (mit.edu [abgerufen am 6. Oktober 2023]).
Christian Blume, Wilfried Jakob: GLEAM - General Learning Evolutionary Algorithm and Method : ein Evolutionärer Algorithmus und seine Anwendungen. KIT Scientific Publishing, Karlsruhe 2009, S. 14, doi:10.5445/ksp/1000013553 (kit.edu [abgerufen am 6. Oktober 2023]).
Christian Blume, Wilfried Jakob: GLEAM: General Learning Evolutionary Algorithm and Method ; ein evolutionärer Algorithmus und seine Anwendungen (= Schriftenreihe des Instituts für Angewandte Informatik. Nr.32). KIT Scientific Publishing, Karlsruhe 2009, ISBN 978-3-86644-436-2, Stagnationsorientierte Abbruchkriterien, S.51, doi:10.5445/KSP/1000013553.
William M. Spears: The Role of Mutation and Recombination in Evolutionary Algorithms. Springer, Berlin, Heidelberg, 2000, S. 225f. doi:10.1007/978-3-662-04199-4
Bill Worzel, Terence Soule, Rick Riolo: Genetic Programming Theory and Practice VI. Springer, Berlin, Heidelberg, 2009, S. 62. doi:10.1007/978-0-387-87623-8
Oscar Cordón, Francisco Herrera, Frank Hoffmann, Luis Magdalena: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific Publishing, Singapore, 2002, S. 95. doi:10.1142/4177
Ralf Mikut, Frank Hendrich: Produktionsreihenfolgeplanung in Ringwalzwerken mit wissensbasierten und evolutionären Methoden. In: Automatisierungstechnik. Band46, Nr.1, Januar 1998, ISSN2196-677X, S.15–21, doi:10.1524/auto.1998.46.1.15.
Ferrante Neri, Carlos Cotta, Pablo Moscato (Eds.): Handbook of Memetic Algorithms (= Studies in Computational Intelligence. Nr.379). Springer, Berlin, Heidelberg 2012, ISBN 978-3-642-26942-4, doi:10.1007/978-3-642-23247-3.
Martina Gorges-Schleuter: A comparative study of global and local selection in evolution strategies. In: Parallel Problem Solving from Nature — PPSN V. Band1498. Springer Berlin Heidelberg, Berlin, Heidelberg 1998, ISBN 3-540-65078-4, S.367–377, doi:10.1007/bfb0056879.
Darrell Whitley: A Genetic Algorithm Tutorial. In: Statistics and Computing. Band4, Nr.2, Juni 1994, ISSN0960-3174, Criticism of the schema theorem, S.77, doi:10.1007/BF00175354.
A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing (= Natural Computing Series). 2. Auflage. Springer, Berlin, Heidelberg 2015, ISBN 978-3-662-44873-1, Criticisms and Recent Extensions of the Schema Theorem, S.236–237, doi:10.1007/978-3-662-44874-8.
Volker Nissen: Einführung in evolutionäre Algorithmen: Optimierung nach dem Vorbild der Evolution. Vieweg, Braunschweig 1997, ISBN 3-528-05499-9, Das Schema-Theorem und seine Kritiker, S.85–92, doi:10.1007/978-3-322-93861-9.
Hitoshi Iba, Nasimul Noman: New Frontier in Evolutionary Algorithms: Theory and Applications. IMPERIAL COLLEGE PRESS, 2011, ISBN 978-1-84816-681-3, doi:10.1142/p769.
Ernesto Sanchez, Giovanni Squillero, Alberto Tonda: Industrial Applications of Evolutionary Algorithms. Intelligent Systems Reference Library 34. Springer, Berlin, Heidelberg 2012, ISBN 978-3-642-27466-4, doi:10.1007/978-3-642-27467-1.
Dipankar Dasgupta, Zbigniew Michalewicz (Hrsg.): Evolutionary Algorithms in Engineering Applications. Springer, Berlin, Heidelberg 1997, ISBN 3-642-08282-3, doi:10.1007/978-3-662-03423-1.
Adam Slowik, Halina Kwasnicka: Evolutionary algorithms and their applications to engineering problems. In: Neural Computing and Applications. Band32, Nr.16, August 2020, ISSN0941-0643, S.12363–12379, doi:10.1007/s00521-020-04832-8.
Christian Blume: Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM. In: S. Cagnoni (Hrsg.): Real-World Applications of Evolutionary Computing. LNCS 1803. Springer, Berlin, Heidelberg 2000, ISBN 3-540-67353-9, S.330–341, doi:10.1007/3-540-45561-2_32.
Nantiwat Pholdee, Sujin Bureerat: Multiobjective Trajectory Planning of a 6D Robot based on Multiobjective Meta Heuristic Search. ACM, 2018, ISBN 978-1-4503-6553-6, S.352–356, doi:10.1145/3301326.3301356 (acm.org [abgerufen am 15. September 2024]).
Hartmut Pohlheim: Evolutionäre Algorithmen - Verfahren, Operatoren und Hinweise für die Praxis. VDI-Buch. Springer, Berlin, Heidelberg 2000, ISBN 3-642-63052-9, doi:10.1007/978-3-642-57137-4.
A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing (= Natural Computing Series). 2. Auflage. Springer, Berlin, Heidelberg 2015, ISBN 978-3-662-44873-1, Working with Evolutionary Algorithms, S.147–163, doi:10.1007/978-3-662-44874-8.
Ernesto Sanchez, Giovanni Squillero, Alberto Tonda: Industrial Applications of Evolutionary Algorithms. Springer, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-27467-1
Shu-Heng Chen: Evolutionary Computation in Economics and Finance. Physica, Heidelberg, 2002. S. 6. doi:10.1007/978-3-7908-1784-3
Claus Aranha, Hitoshi Iba: Application of a Memetic Algorithm to the Portfolio Optimization Problem. In: Wayne Wobcke, Mengjie Zhang (Hrsg.): Advances in Artificial Intelligence. AI 2008. LNCS 5360. Springer, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-89378-3_52
David G. Mayer: Evolutionary Algorithms and Agricultural Systems. Springer, Boston, MA, 2002, S. 2. doi:10.1007/978-1-4615-1717-7
Kalyanmoy Deb: GeneAS: A Robust Optimal Design Technique for Mechanical Component Design. In: Dipankar Dasgupta, Zbigniew Michalewicz (Hrsg.): Evolutionary Algorithms in Engineering Applications. Springer Berlin Heidelberg, Berlin, Heidelberg 1997, ISBN 3-642-08282-3, S.497–514, doi:10.1007/978-3-662-03423-1_27.
Mark P. Kleeman, Gary B. Lamont: Scheduling of Flow-Shop, Job-Shop, and Combined Scheduling Problems using MOEAs with Fixed and Variable Length Chromosomes. In: Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling (Hrsg.): Evolutionary Scheduling (= Studies in Computational Intelligence. Band49). Springer, Berlin, Heidelberg 2007, ISBN 978-3-540-48582-7, S.49–99, doi:10.1007/978-3-540-48584-1.
Kazi Shah Nawaz Ripon, Chi-Ho Tsang, Sam Kwong: An Evolutionary Approach for Solving the Multi-Objective Job-Shop Scheduling Problem. In: Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling (Hrsg.): Evolutionary Scheduling (= Studies in Computational Intelligence. Band49). Springer, Berlin, Heidelberg 2007, ISBN 978-3-540-48582-7, S.165–195, doi:10.1007/978-3-540-48584-1.
Marek Mika, Grzegorz Waligóra, Jan Węglarz: Modelling and solving grid resource allocation problem with network resources for workflow applications. In: Journal of Scheduling. Band14, Nr.3, Juni 2011, ISSN1094-6136, S.291–306, doi:10.1007/s10951-009-0158-0 (springer.com [abgerufen am 15. September 2024]).
Wilfried Jakob, Sylvia Strack, Alexander Quinte, Günther Bengel, Karl-Uwe Stucky: Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing. In: Algorithms. Band6, Nr.2, 22. April 2013, ISSN1999-4893, S.245–277, doi:10.3390/a6020245 (mdpi.com [abgerufen am 8. Februar 2022]).
Alberto Colorni, Marco Dorigo, Vittorio Maniezzo: Genetic Algorithms: A New Approach to the Timetable Problem. In: M. Akgül, H.W. Hamacher, S. Tüfekçi (Hrsg.): Combinatorial Optimization. NATO ASI Series (Series F: Computer and Systems Sciences), Nr.82. Springer, Berlin, Heidelberg 1992, ISBN 3-642-77491-1, S.235–239, doi:10.1007/978-3-642-77489-8_14.
Dipankar Dasgupta: Optimal Scheduling of Thermal Power Generation Using Evolutionary Algorithms. In: Dipankar Dasgupta, Zbigniew Michalewicz (Hrsg.): Evolutionary Algorithms in Engineering Applications. Springer, Berlin, Heidelberg 1997, ISBN 3-642-08282-3, S.317–328, doi:10.1007/978-3-662-03423-1_18.
W. Leo Meerts, Michael Schmitt: Application of genetic algorithms in automated assignments of high-resolution spectra. In: International Reviews in Physical Chemistry. Band25, Nr.3, 1. Juli 2006, ISSN0144-235X, S.353–406, doi:10.1080/01442350600785490.
Darrell Whitley: An overview of evolutionary algorithms: practical issues and common pitfalls. In: Information and Software Technology. Band43, Nr.14, Dezember 2001, S.817–831, doi:10.1016/S0950-5849(01)00188-4 (elsevier.com [abgerufen am 8. Februar 2022]).
Lukáš Sekanina: Evolvable Components: From Theory to Hardware Implementations. Springer, Berlin, Heidelberg, 2004, S. 27. doi:10.1007/978-3-642-18609-7
Thomas Bäck, Hans-Paul Schwefel: An Overview of Evolutionary Algorithms for Parameter Optimization. In: Evolutionary Computation. Band1, Nr.1, 1. März 1993, ISSN1063-6560, S.1–23, doi:10.1162/evco.1993.1.1.1.
Nikolaus Hansen, Andreas Ostermeier: Completely Derandomized Self-Adaptation in Evolution Strategies. In: Evolutionary Computation. Band9, Nr.2, Juni 2001, ISSN1063-6560, S.159–195, doi:10.1162/106365601750190398.
Nikolaus Hansen, Stefan Kern: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Conf. Proc. of Parallel Problem Solving from Nature - PPSN VIII. LNCS, Nr.3242. Springer Berlin Heidelberg, Berlin, Heidelberg 2004, ISBN 3-540-23092-0, S.282–291, doi:10.1007/978-3-540-30217-9_29.
Julian F. Miller: Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin, Heidelberg, 2011, S. 63. doi:10.1007/978-3-642-17310-3_2
elsevier.com
linkinghub.elsevier.com
Tobias Friedrich, Markus Wagner: Seeding the initial population of multi-objective evolutionary algorithms: A computational study. In: Applied Soft Computing. Band33, August 2015, S.223–230, doi:10.1016/j.asoc.2015.04.043 (elsevier.com [abgerufen am 1. Oktober 2023]).
Musrrat Ali, Millie Pant, Ajith Abraham: Unconventional initialization methods for differential evolution. In: Applied Mathematics and Computation. Band219, Nr.9, Januar 2013, S.4474–4494, doi:10.1016/j.amc.2012.10.053 (elsevier.com [abgerufen am 1. Oktober 2023]).
Darrell Whitley: An overview of evolutionary algorithms: practical issues and common pitfalls. In: Information and Software Technology. Band43, Nr.14, Dezember 2001, S.817–831, doi:10.1016/S0950-5849(01)00188-4 (elsevier.com [abgerufen am 8. Februar 2022]).
Borhan Kazimipour, Xiaodong Li, A. K. Qin: A review of population initialization techniques for evolutionary algorithms. IEEE, 2014, ISBN 978-1-4799-1488-3, S.2585–2592, doi:10.1109/CEC.2014.6900618 (ieee.org [abgerufen am 1. Oktober 2023]).
Borhan Kazimipour, Xiaodong Li, A. K. Qin: Initialization methods for large scale global optimization. In: IEEE Congress on Evolutionary Computation. 2013, S.2750–2757, doi:10.1109/CEC.2013.6557902 (ieee.org).
kit.edu
publikationen.bibliothek.kit.edu
Christian Blume, Wilfried Jakob: GLEAM - General Learning Evolutionary Algorithm and Method : ein Evolutionärer Algorithmus und seine Anwendungen. KIT Scientific Publishing, Karlsruhe 2009, S. 14, doi:10.5445/ksp/1000013553 (kit.edu [abgerufen am 6. Oktober 2023]).
Wilfried Jakob: Applying Evolutionary Algorithms Successfully - A Guide Gained from Real-world Applications. KIT Scientific Working Papers, Nr.170. KIT Scientific Publishing, 2021, ISSN2194-1629, doi:10.5445/IR/1000135763, arxiv:2107.11300 (englisch, kit.edu).
mdpi.com
Wilfried Jakob, Sylvia Strack, Alexander Quinte, Günther Bengel, Karl-Uwe Stucky: Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing. In: Algorithms. Band6, Nr.2, 22. April 2013, ISSN1999-4893, S.245–277, doi:10.3390/a6020245 (mdpi.com [abgerufen am 8. Februar 2022]).
mit.edu
direct.mit.edu
Thomas Bäck, Hans-Paul Schwefel: An Overview of Evolutionary Algorithms for Parameter Optimization. In: Evolutionary Computation. Band1, Nr.1, März 1993, ISSN1063-6560, S.1–23, S. 5, doi:10.1162/evco.1993.1.1.1 (mit.edu [abgerufen am 6. Oktober 2023]).
researchgate.net
Heikki Maaranen, Kaisa Miettinen, Antti Penttinen: On initial populations of a genetic algorithm for continuous optimization problems. In: Journal of Global Optimization. Band37, Nr.3, 23. Januar 2007, ISSN0925-5001, S.405–436, doi:10.1007/s10898-006-9056-6 (researchgate.net [abgerufen am 1. Oktober 2023]).
Wilfried Jakob: HyGLEAM–An Approach to Generally Applicable Hybridization of Evolutionary Algorithms. In: Parallel Problem Solving from Nature — PPSN VII. Band2439. Springer, Berlin, Heidelberg 2002, ISBN 3-540-44139-5, S.527–536, doi:10.1007/3-540-45712-7_51 (researchgate.net [abgerufen am 1. Oktober 2023]).
Hans-Paul Schwefel: Evolution and Optimum Seeking. Sixth-generation computer technology series. John Wiley & Sons, New York 1995, ISBN 0-471-57148-2 (researchgate.net).
Hans-Paul Schwefel: Evolution and Optimum Seeking (= Sixth-generation computer technology series). Wiley, New York 1995, ISBN 978-0-471-57148-3, S.109 (researchgate.net [abgerufen am 16. September 2024]).
Marek Mika, Grzegorz Waligóra, Jan Węglarz: Modelling and solving grid resource allocation problem with network resources for workflow applications. In: Journal of Scheduling. Band14, Nr.3, Juni 2011, ISSN1094-6136, S.291–306, doi:10.1007/s10951-009-0158-0 (springer.com [abgerufen am 15. September 2024]).
umsl.edu
cs.umsl.edu
Cesary Janikow, Zbigniew Michalewicz: An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms. In: Conf. Proc of the Fourth Int. Conf. on Genetic Algorithms (ICGA'91). 1991, S.31–36 (umsl.edu [PDF]).
Kaisa Miettinen, Pekka Neittaanmäki, M.M. Mäkelä, Jacques Périaux (Hrsg.): Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications. Wiley, Chichester, Weinheim 1999, ISBN 978-0-471-99902-7 (wiley.com).
worldcat.org
Thomas Bäck, David B. Fogel, Zbigniew Michalewicz (Hrsg.): Evolutionary Computation 1. Institute of Physics Publishing, Bristol; Philadelphia 2000, ISBN 978-0-7503-0664-5, Glossary, S. xxx und S. xxxvii (worldcat.org [abgerufen am 16. September 2024]).
zdb-katalog.de
Heikki Maaranen, Kaisa Miettinen, Antti Penttinen: On initial populations of a genetic algorithm for continuous optimization problems. In: Journal of Global Optimization. Band37, Nr.3, 23. Januar 2007, ISSN0925-5001, S.405–436, doi:10.1007/s10898-006-9056-6 (researchgate.net [abgerufen am 1. Oktober 2023]).
Thomas Bäck, Hans-Paul Schwefel: An Overview of Evolutionary Algorithms for Parameter Optimization. In: Evolutionary Computation. Band1, Nr.1, März 1993, ISSN1063-6560, S.1–23, S. 5, doi:10.1162/evco.1993.1.1.1 (mit.edu [abgerufen am 6. Oktober 2023]).
Ralf Mikut, Frank Hendrich: Produktionsreihenfolgeplanung in Ringwalzwerken mit wissensbasierten und evolutionären Methoden. In: Automatisierungstechnik. Band46, Nr.1, Januar 1998, ISSN2196-677X, S.15–21, doi:10.1524/auto.1998.46.1.15.
Darrell Whitley: A Genetic Algorithm Tutorial. In: Statistics and Computing. Band4, Nr.2, Juni 1994, ISSN0960-3174, Criticism of the schema theorem, S.77, doi:10.1007/BF00175354.
Adam Slowik, Halina Kwasnicka: Evolutionary algorithms and their applications to engineering problems. In: Neural Computing and Applications. Band32, Nr.16, August 2020, ISSN0941-0643, S.12363–12379, doi:10.1007/s00521-020-04832-8.
Wilfried Jakob: Applying Evolutionary Algorithms Successfully - A Guide Gained from Real-world Applications. KIT Scientific Working Papers, Nr.170. KIT Scientific Publishing, 2021, ISSN2194-1629, doi:10.5445/IR/1000135763, arxiv:2107.11300 (englisch, kit.edu).
Marek Mika, Grzegorz Waligóra, Jan Węglarz: Modelling and solving grid resource allocation problem with network resources for workflow applications. In: Journal of Scheduling. Band14, Nr.3, Juni 2011, ISSN1094-6136, S.291–306, doi:10.1007/s10951-009-0158-0 (springer.com [abgerufen am 15. September 2024]).
Wilfried Jakob, Sylvia Strack, Alexander Quinte, Günther Bengel, Karl-Uwe Stucky: Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing. In: Algorithms. Band6, Nr.2, 22. April 2013, ISSN1999-4893, S.245–277, doi:10.3390/a6020245 (mdpi.com [abgerufen am 8. Februar 2022]).
W. Leo Meerts, Michael Schmitt: Application of genetic algorithms in automated assignments of high-resolution spectra. In: International Reviews in Physical Chemistry. Band25, Nr.3, 1. Juli 2006, ISSN0144-235X, S.353–406, doi:10.1080/01442350600785490.
Thomas Bäck, Hans-Paul Schwefel: An Overview of Evolutionary Algorithms for Parameter Optimization. In: Evolutionary Computation. Band1, Nr.1, 1. März 1993, ISSN1063-6560, S.1–23, doi:10.1162/evco.1993.1.1.1.
Nikolaus Hansen, Andreas Ostermeier: Completely Derandomized Self-Adaptation in Evolution Strategies. In: Evolutionary Computation. Band9, Nr.2, Juni 2001, ISSN1063-6560, S.159–195, doi:10.1162/106365601750190398.