Mescheder, Lars Geiger, Andreas Nowozin, Sebastian: Which Training Methods for GANs do actually Converge? 13. Januar 2018, arxiv:1801.04406.
Kevin Schawinski, Ce Zhang, Hantian Zhang, Lucas Fowler, Gokula Krishnan Santhanam: Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit. In: Instrumentation and Methods for Astrophysics. 1. Februar 2017, arxiv:1702.00403.
Michela Paganini, Luke de Oliveira, Benjamin Nachman: Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis. In: Computing and Software for Big Science. 1. Jahrgang, 2017, S.4, doi:10.1007/s41781-017-0004-6, arxiv:1701.05927, bibcode:2017arXiv170105927D.
Martin Erdmann, Jonas Glombitza, Thorben Quast: Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network. In: Computing and Software for Big Science. 3. Jahrgang, 2019, S.4, doi:10.1007/s41781-018-0019-7, arxiv:1807.01954.
Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correia, Antonia Adler, Kristian Kersting: Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks. In: Proceedings of the 39th International Conference on Machine Learning (ICML). 2022 (arxiv.org [PDF; abgerufen am 9. Juni 2022]).
doi.org
Michela Paganini, Luke de Oliveira, Benjamin Nachman: Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis. In: Computing and Software for Big Science. 1. Jahrgang, 2017, S.4, doi:10.1007/s41781-017-0004-6, arxiv:1701.05927, bibcode:2017arXiv170105927D.
Martin Erdmann, Jonas Glombitza, Thorben Quast: Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network. In: Computing and Software for Big Science. 3. Jahrgang, 2019, S.4, doi:10.1007/s41781-018-0019-7, arxiv:1807.01954.
Wei Li, Melvin Gauci und Roderich Gross: A Coevolutionary Approach to Learn Animal Behavior Through Controlled Interaction. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO 2013) Amsterdam, 6. Juli 2013, S. 223–230. doi:10.1145/2463372.2465801
Wei Li, Melvin Gauci, Roderich Groß: Turing learning: a metric-free approach to inferring behavior and its application to swarms. In: Swarm Intelligence. 10. Jahrgang, Nr.3, 30. August 2016, S.211–243, doi:10.1007/s11721-016-0126-1.
Michela Paganini, Luke de Oliveira, Benjamin Nachman: Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis. In: Computing and Software for Big Science. 1. Jahrgang, 2017, S.4, doi:10.1007/s41781-017-0004-6, arxiv:1701.05927, bibcode:2017arXiv170105927D.
Yang Song, Rui Shu, Nate Kushman, Stefano Ermon: Constructing Unrestricted Adversarial Examples with Generative Models. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018. S.8322--8333 (neurips.cc [PDF; abgerufen am 9. Juni 2022]).
nips.cc
papers.nips.cc
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio: Generative Adversarial Nets. In: NIPS. 2014.