Geoengineering (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Geoengineering" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
1st place
1st place
33rd place
2nd place
123rd place
6th place
234th place
203rd place
18th place
181st place
low place
low place
1,283rd place
1,723rd place
1,778th place
1,959th place
66th place
4th place
1,293rd place
678th place
low place
low place
418th place
22nd place
7,281st place
3,376th place
4,679th place
1,728th place
102nd place
1,110th place
low place
low place
2,128th place
4,772nd place
1,137th place
74th place
low place
low place
2,415th place
2,273rd place
low place
low place
12th place
25th place
753rd place
43rd place
1,943rd place
4,790th place
254th place
419th place
6,750th place
6,575th place
226th place
12th place
2,532nd place
4,037th place
1,143rd place
68th place
267th place
15th place
4th place
7th place
1,366th place
81st place
1,999th place
2,709th place
low place
1,436th place
low place
low place
49th place
151st place
896th place
1,716th place
6,554th place
9,753rd place
low place
low place

berliner-zeitung.de

bundestag.de

cbd.int

copernicus.org

esd.copernicus.org

  • Franz Dietrich Oeste, Renaud de Richter, Tingzhen Ming, Sylvain Caillol: Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. In: Earth System Dynamics. Band 8, Nr. 1, 13. Januar 2017, ISSN 2190-4979, S. 1–54, doi:10.5194/esd-8-1-2017 (copernicus.org [abgerufen am 11. Mai 2022]).

meetingorganizer.copernicus.org

de-ipcc.de

deutschlandfunk.de

doi.org

  • Oliver Geden: An actionable climate target. In: Nature Geoscience. Band 9, Nr. 5, Mai 2016, ISSN 1752-0908, S. 340–342, doi:10.1038/ngeo2699 (nature.com [abgerufen am 10. März 2021]).
  • Felix Schenuit et al.: Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases. In: Frontiers in Climate. Band 3, 2021, ISSN 2624-9553, doi:10.3389/fclim.2021.638805 (frontiersin.org [abgerufen am 8. März 2021]).
  • Olivier Boucher u. a.: Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. In: WIREs Climate Change. Band 5, Nr. 1, 2014, doi:10.1002/wcc.261.
  • Institute of Medicine, National Academy of Sciences, and National Academy of Engineering: Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. 1992, ISBN 0-309-04386-7, doi:10.17226/1605 (nap.edu [abgerufen am 10. Februar 2019]).
  • David W. Keith: Geoengineering the climate: History and Prospect. In: Annual review of energy and the environment. Band 25, 2000, doi:10.1146/annurev.energy.25.1.245 (harvard.edu [PDF; 387 kB]).
  • Ken Caldeira und Govindasamy Bala: Reflecting on 50 years of geoengineering research. In: Earth’s Future. 2016, doi:10.1002/2016EF000454.
  • Paul Crutzen: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? In: Climatic Change. Band 77, 2006, S. 211–220, doi:10.1007/s10584-006-9101-y.
  • Mark G. Lawrence u. a.: Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. In: Nature Communications. September 2018, doi:10.1038/s41467-018-05938-3.
  • A. Parker, J. B. Horton und D. W. Keith: Stopping Solar Geoengineering Through Technical Means: A Preliminary Assessment of Counter‐Geoengineering. In: Earth’s Future. Mai 2018, doi:10.1029/2018EF000864.
  • A. Robock, A. Marquardt, B. Kravitz, G. Stenchikov: Benefits, risks, and costs of stratospheric geoengineering. In: Geophysical Research Letters. Band 36, Nr. 19, 2009, doi:10.1029/2009GL039209.
  • Sabine Mathesius et al.: Long-term response of oceans to CO2 removal from the atmosphere. In: Nature Climate Change. August 2015, doi:10.1038/nclimate2729.
  • Originalarbeit: David L Mitchell und William Finnegan: Modification of cirrus clouds to reduce global warming. In: Environmental Research Letters. 2009, doi:10.1088/1748-9326/4/4/045102.
  • Peter J. Irvine, Ben Kravitz, Mark G. Lawrence und Helene Muri: An overview of the Earth system science of solar geoengineering. In: WIREs climate change. Juli 2016, doi:10.1002/wcc.423.
  • Peer Johannes Nowack et al.: Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. In: Atmospheric Chemistry and Physics. 2016, doi:10.5194/acp-16-4191-2016.
  • Jonathan Proctor et al.: Estimating global agricultural effects of geoengineering using volcanic eruptions. In: Nature. 2018, doi:10.1038/s41586-018-0417-3.
  • Sonia Seneviratne u. a.: Land radiative management as contributor to regional-scale climate adaptation and mitigation. In: Nature Geoscience. Band 11, Februar 2018, doi:10.1038/s41561-017-0057-5.
  • Roger Angel: Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). In: Proceedings of the National Academy of Sciences. November 2006, doi:10.1073/pnas.0608163103.
  • Daniel Huppmann, Elmar Kriegler, Keywan Riahi, Joeri Rogelj, Gunnar Luderer et al.: IAMC 1.5°C Scenario Explorer and Data hosted by IIASA. doi:10.22022/SR15/08-2018.15429.
  • Vera Heck u. a.: Biomass-based negative emissions difficult to reconcile with planetary boundaries. In: Nature Climate Change. Band 8, 2018, doi:10.1038/s41558-017-0064-y.
  • Kevin Anderson, Glen Peters: The trouble with negative emissions. In: Science. Band 354, Nr. 6309, 2016, S. 182 f., doi:10.1126/science.aah4567.
  • Tsung-Hung Peng und Wallace S. Broecker: Factors limiting the reduction of atmospheric CO2 by iron fertilization. In: Limnology and Oceanography. Vol. 36, Nr. 8, 1991, S. 1919, doi:10.4319/lo.1991.36.8.1919 (englisch).
  • Greg H. Rau et al.: Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. In: Proceedings of the National Academy of Sciences. Band 110, Nr. 25, 18. Juni 2013, S. 10095–10100, doi:10.1073/pnas.1222358110, PMID 23729814, PMC 3690887 (freier Volltext) – (pnas.org [abgerufen am 29. Juli 2021]).
  • Luna J. J. Geerts, Astrid Hylén, Filip J. R. Meysman: Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine. In: Biogeosciences. Band 22, Nr. 2, Januar 2025, doi:10.5194/bg-22-355-2025.
  • Miriam Ferrer González et al.: Enhanced Rates of Regional Warming and Ocean Acidification after Termination of Large‐scale Ocean Alkalinization. In: Geophysical Research Letters. 21. Juni 2018, doi:10.1029/2018GL077847.
  • Franz Dietrich Oeste, Renaud de Richter, Tingzhen Ming, Sylvain Caillol: Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. In: Earth System Dynamics. Band 8, Nr. 1, 13. Januar 2017, ISSN 2190-4979, S. 1–54, doi:10.5194/esd-8-1-2017 (copernicus.org [abgerufen am 11. Mai 2022]).
  • Originalarbeit: David L Mitchell und William Finnegan: Modification of cirrus clouds to reduce global warming. In: Environmental Research Letters. 2009, doi:10.1088/1748-9326/4/4/045102.
  • Albert van Wijngaarden et al.: A survey of interventions to actively conserve the frozen North. In: Climatic Change. März 2024, doi:10.1007/s10584-024-03705-6.
  • Mika Rantanen et al.: The Arctic has warmed nearly four times faster than the globe since 1979. In: Communications Earth & Environment. August 2022, doi:10.1038/s43247-022-00498-3.
  • David I. Armstrong McKay, Johan Rockström et al.: Exceeding 1.5°C global warming could trigger multiple climate tipping points. In: Science. September 2022, doi:10.1126/science.abn7950.
  • John C. Moore et al.: Geoengineer polar glaciers to slow sea-level rise. In: Nature. Band 555, 14. März 2018, S. 303–305, doi:10.1038/d41586-018-03036-4.
  • Alan Robock: 20 reasons why geoengineering may be a bad idea. In: Bulletin of the Atomic Scientists. Band 64, Nr. 2, 2008, S. 14–59, doi:10.1080/00963402.2008.11461140 (Volltext [PDF; 988 kB]).
  • Damon Matthews, Ken Caldeira: Transient climate– carbon simulations of planetary geoengineering. In: Proceedings of the National Academy of Sciences. Band 104, Nr. 24, Juni 2007, S. 9949–9954, doi:10.1073/pnas.0700419104.
  • Ralph J. Cicerone: Geoengineering: Encouraging Research and Overseeing Implementation. Climatic Change, Vol. 77, Nr. 3–4, S. 221–226. doi:10.1007/s10584-006-9102-x

economist.com

frontiersin.org

handle.net

hdl.handle.net

  • President’s Science Advisory Committee (Hrsg.): Restoring the Quality of Our Environment. Report of the Environmental Pollution Panel. Washington, DC 1965, S. 9, 111–131 (handle.net).

harvard.edu

keith.seas.harvard.edu

geoengineering.environment.harvard.edu

  • C. M. Golja et al.: Aerosol Dynamics in the Near Field of the SCoPEx Stratospheric Balloon Experiment. In: Journal of Geophysical Research. 2021 (harvard.edu [abgerufen am 22. März 2021]).

news.harvard.edu

iea.org

  • International Energy Agency (Hrsg.): Global Energy & CO2 Status Report 2017. März 2018 (iea.org [PDF; 389 kB]).

iiasa.ac.at

pure.iiasa.ac.at

  • Originalartikel: Cesare Marchetti: On geoengineering and the CO2 problem. In: Climatic Change. Band 1, Nr. 1, März 1977 (Entwurfsfassung [PDF; 498 kB]).

ipcc.ch

  • Philippe Ciais, Christopher Sabine u. a.: Carbon and Other Biogeochemical Cycles. In: T. F. Stocker u. a. (Hrsg.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, S. 469 und 546–552 (ipcc.ch [PDF; 24,4 MB]).
  • J. D.Rogel, E.Kriegler et al.: 2018: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: V. Masson-Delmotte u. a. (Hrsg.): Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Overview of 1.5°C Mitigation Pathways – 2.3.2.2 Pathways keeping warming below 1.5°C or temporarily overshooting it (ipcc.ch).

keutschgroup.com

kiel-earth-institute.de

klima-der-gerechtigkeit.de

llnl.gov

e-reports-ext.llnl.gov

  • Edward Teller, Roderick Hyde und Lowell Wood: Global Warming and Ice Ages: Prospects for Physics-Based Modulation of Global Change. Hrsg.: Lawrence Livermore National Laboratory. 15. August 1997, S. 10–14 (llnl.gov [PDF; 267 kB]).

monde-diplomatique.de

  • Udo E. Simonis: Die Klimamacher kommen. Geoengineering: Pro und Contra. Le Monde diplomatique, 11. Mai 2018, abgerufen am 13. Mai 2018.

nap.edu

  • Institute of Medicine, National Academy of Sciences, and National Academy of Engineering: Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. 1992, ISBN 0-309-04386-7, doi:10.17226/1605 (nap.edu [abgerufen am 10. Februar 2019]).

nature.com

nih.gov

ncbi.nlm.nih.gov

  • Greg H. Rau et al.: Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. In: Proceedings of the National Academy of Sciences. Band 110, Nr. 25, 18. Juni 2013, S. 10095–10100, doi:10.1073/pnas.1222358110, PMID 23729814, PMC 3690887 (freier Volltext) – (pnas.org [abgerufen am 29. Juli 2021]).

orf.at

orf.at

sciencev1.orf.at

phys.org

pnas.org

redirecter.toolforge.org

  • Elmar Altvater: Dunkle Sonne – Im Erdzeitalter des Kapitals. In: www.monde-diplomatique.de. 14. November 2014, archiviert vom Original (nicht mehr online verfügbar) am 29. November 2014; abgerufen am 22. November 2014.
  • Forschung für Nachhaltige Entwicklung (FONA). Zum „Climate Engineering“ aus natur-, sozial- und rechtswissenschaftlicher Perspektive. 5. August 2009, archiviert vom Original (nicht mehr online verfügbar); abgerufen am 11. Mai 2022.
  • Climate Engineering Conference 2020. About CEC. Archiviert vom Original (nicht mehr online verfügbar); abgerufen am 11. Mai 2022.
  • Climate Engineering Conference 2017. (PDF) Teilnehmerliste. Archiviert vom Original; abgerufen am 11. Mai 2022.
  • Climate Engineering in Context 2021. CEC21 goes virtual! Archiviert vom Original (nicht mehr online verfügbar); abgerufen am 11. Mai 2022.

reuters.com

royalsociety.org

rutgers.edu

climate.envsci.rutgers.edu

scientificamerican.com

spice.ac.uk

spiegel.de

srmgi.org

sueddeutsche.de

taz.de

technologyreview.com

theguardian.com

web.archive.org

zdb-katalog.de

  • Oliver Geden: An actionable climate target. In: Nature Geoscience. Band 9, Nr. 5, Mai 2016, ISSN 1752-0908, S. 340–342, doi:10.1038/ngeo2699 (nature.com [abgerufen am 10. März 2021]).
  • Felix Schenuit et al.: Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases. In: Frontiers in Climate. Band 3, 2021, ISSN 2624-9553, doi:10.3389/fclim.2021.638805 (frontiersin.org [abgerufen am 8. März 2021]).
  • Samiha Shafy: Schwefel in der Stratosphäre: Giftkur fürs Weltklima. In: Der Spiegel. 10. Juli 2006, ISSN 2195-1349 (spiegel.de [abgerufen am 11. Mai 2022]).
  • Franz Dietrich Oeste, Renaud de Richter, Tingzhen Ming, Sylvain Caillol: Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. In: Earth System Dynamics. Band 8, Nr. 1, 13. Januar 2017, ISSN 2190-4979, S. 1–54, doi:10.5194/esd-8-1-2017 (copernicus.org [abgerufen am 11. Mai 2022]).

zeit.de