Fritz Kliem: Archimedes' Werke. Satz 34. Verlag von 0. Häring, Berlin 1914, S.189 (archive.org).
arxiv.org
We have seen that in every major theory of physics, challenging mathematical questions arise from the assumption that spacetime is a continuum. Zitiert in John Baez: Struggles with the Continuum. 2020, doi:10.48550/arXiv.1609.01421, arxiv:1609.01421 [math-ph], Kap. 6: Conclusions, S. 35.
doi.org
Mohammad Saleh Zarepour: Avicenna on Mathematical Infinity. In: Archiv für Geschichte der Philosophie. De Gruyter, 2020, S.379–425, doi:10.1515/agph-2017-0032.
We have seen that in every major theory of physics, challenging mathematical questions arise from the assumption that spacetime is a continuum. Zitiert in John Baez: Struggles with the Continuum. 2020, doi:10.48550/arXiv.1609.01421, arxiv:1609.01421 [math-ph], Kap. 6: Conclusions, S. 35.
google.de
books.google.de
Gottfried Wilhelm Freiherr von Leibniz: Leibnizens mathematische Schriften: Mathematik. A. Asher, 1858 (eingeschränkte Vorschau in der Google-Buchsuche).
Brook Taylor: Methodus Incrementorum Directa & Inversa. William Innys, London 1717 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 31. August 2020]).
Kenny Easwaran, Alan Hájek, Paolo Mancosu, Graham Oppy: Al-Ghazālī’s Objection. In: Stanford Encyclopedia of Philosophy. 2023, abgerufen am 21. April 2024.