Hyperparameteroptimierung (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Hyperparameteroptimierung" in German language version.

refsWebsite
Global rank German rank
69th place
189th place
2nd place
3rd place
1,997th place
4,762nd place
low place
low place
18th place
181st place
2,798th place
low place
4th place
7th place
415th place
779th place
1st place
1st place
33rd place
2nd place

arxiv.org

  • Jasper Snoek, Hugo Larochelle, Ryan Adams: Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems. 2012, arxiv:1206.2944, bibcode:2012arXiv1206.2944S (nips.cc [PDF]).
  • Chris Thornton, Frank Hutter, Holger Hoos: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Knowledge Discovery and Data Mining. 2013, arxiv:1208.3719, bibcode:2012arXiv1208.3719T (ubc.ca [PDF]).
  • Dougal Maclaurin, David Duvenaud, Ryan P. Adams: Gradient-based Hyperparameter Optimization through Reversible Learning. 2015, arxiv:1502.03492 [stat.ML].
  • Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, Babak Hodjat: Evolving Deep Neural Networks. 2017, arxiv:1703.00548 [cs.NE].
  • Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, Koray Kavukcuoglu: Population Based Training of Neural Networks. 2017, arxiv:1711.09846 [cs.LG].

doi.org

harvard.edu

ui.adsabs.harvard.edu

  • Jasper Snoek, Hugo Larochelle, Ryan Adams: Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems. 2012, arxiv:1206.2944, bibcode:2012arXiv1206.2944S (nips.cc [PDF]).
  • Chris Thornton, Frank Hutter, Holger Hoos: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Knowledge Discovery and Data Mining. 2013, arxiv:1208.3719, bibcode:2012arXiv1208.3719T (ubc.ca [PDF]).

mit.edu

jmlr.csail.mit.edu

  • James Bergstra, Yoshua Bengio: Random Search for Hyper-Parameter Optimization. In: Journal of Machine Learning Research. 13. Jahrgang, 2012, S. 281–305 (mit.edu [PDF]).

nih.gov

ncbi.nlm.nih.gov

nips.cc

papers.nips.cc

  • James Bergstra, Remi Bardenet, Yoshua Bengio, Balazs Kegl: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems. 2011 (nips.cc [PDF]).
  • Jasper Snoek, Hugo Larochelle, Ryan Adams: Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems. 2012, arxiv:1206.2944, bibcode:2012arXiv1206.2944S (nips.cc [PDF]).

ntu.edu.tw

csie.ntu.edu.tw

redirecter.toolforge.org

  • Justin Domke: Generic Methods for Optimization-Based Modeling. In: Aistats. 22. Jahrgang, 2012 (jmlr.org (Memento des Originals vom 24. Januar 2014 im Internet Archive) [abgerufen am 9. Dezember 2017]).

ubc.ca

cs.ubc.ca

  • Frank Hutter, Holger Hoos, Kevin Layton-Brown: Sequential model-based optimization for general algorithm configuration. In: Learning and Intelligent Optimization (Hrsg.): Lecture Notes in Computer Science. Band 6683. Springer, Berlin, Heidelberg 2011, ISBN 978-3-642-25565-6, S. 507–523, doi:10.1007/978-3-642-25566-3_40 (ubc.ca [PDF]).
  • Chris Thornton, Frank Hutter, Holger Hoos: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Knowledge Discovery and Data Mining. 2013, arxiv:1208.3719, bibcode:2012arXiv1208.3719T (ubc.ca [PDF]).

web.archive.org

  • Justin Domke: Generic Methods for Optimization-Based Modeling. In: Aistats. 22. Jahrgang, 2012 (jmlr.org (Memento des Originals vom 24. Januar 2014 im Internet Archive) [abgerufen am 9. Dezember 2017]).