Impfstoff (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Impfstoff" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
4th place
7th place
low place
3,159th place
4,845th place
310th place
8,614th place
583rd place
123rd place
6th place
1st place
1st place
33rd place
2nd place
3,043rd place
200th place
low place
low place
low place
1,296th place
301st place
369th place
3,695th place
4,633rd place
447th place
751st place
818th place
3,057th place
7th place
19th place
low place
low place
2,912th place
1,242nd place
1,023rd place
64th place
7,696th place
870th place
low place
low place
low place
9,156th place
274th place
152nd place
low place
low place
low place
low place
low place
1,019th place
195th place
255th place
615th place
1,230th place
267th place
15th place
low place
low place
1,065th place
65th place
240th place
13th place
1,249th place
80th place
low place
6,081st place
68th place
29th place
low place
1,040th place

aasv.org

aerzteblatt.de

basg.gv.at

  • FAQ Impfstoffe. In: BASG. 13. September 2019, abgerufen am 1. November 2021.

bio.org

biospektrum.de

businesswire.com

dimdi.de

doi.org

europa.eu

ema.europa.eu

faz.net

fda.gov

  • Thimerosal in vaccines. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 6. September 2007, abgerufen am 1. Oktober 2007.

fraunhofer.de

ipk.fraunhofer.de

gesetze-im-internet.de

gesundheit.de

gesundheit.gv.at

handelsblatt.com

jyi.org

legacy.jyi.org

mdpi.com

nationalpost.com

ndr.de

nih.gov

ncbi.nlm.nih.gov

  • A. Saleh, S. Qamar, A. Tekin, R. Singh, R. Kashyap: Vaccine Development Throughout History. In: Cureus. Band 13, Nummer 7, Juli 2021, S. e16635, doi:10.7759/cureus.16635, PMID 34462676, PMC 8386248 (freier Volltext).
  • H. Meyer, R. Ehmann, G. L. Smith: Smallpox in the Post-Eradication Era. In: Viruses. Band 12, Nummer 2, Januar 2020, S. , doi:10.3390/v12020138, PMID 31991671, PMC 7077202 (freier Volltext).
  • M. K. Slifka, J. M. Hanifin: Smallpox: the basics. In: Dermatologic clinics. Band 22, Nummer 3, Juli 2004, S. 263–74, vi, doi:10.1016/j.det.2004.03.002, PMID 15207308.
  • K. A. Simonsen, J. Snowden: Smallpox. 2021. In: StatPearls. StatPearls Publishing, PMID 29262186.
  • J. E. Salk: Studies in human subjects on active immunization against poliomyelitis. I. A preliminary report of experiments in progress. In: Journal of the American Medical Association. 1953, Band 151, Nr. 13, S. 1081–1098, PMID 13034436.
  • M. Theiler, H. H. Smith: The effect of prolonged cultivation in vitro upon the pathogenicity of Yellow Fever Virus. In: Journal of Experimental Medicine. 1937, Band 65, Nr. 6, S. 767–786, PMID 19870633, PMC 2133530 (freier Volltext).
  • A. B. Sabin: Present status of attenuated live virus poliomyelitis vaccine. In: Bulletin of the New York Academy of Medicine. 1957, Band 33, Nr. 1, S. 17–39, PMID 13383294, PMC 1806054 (freier Volltext).
  • R. H. Purcell, J. L. Gerin: Hepatitis B subunit vaccine: a preliminary report of safety and efficacy tests in chimpanzees. In: American Journal of the Medical Sciences. 1975, Band 270, Nr. 2, S. 395–399, PMID 828832.
  • R. Schneerson, O. Barrera, A. Sutton, J. B. Robbins: Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. In: Journal of Experimental Medicine. 1980, Band 152, Nr. 2, S. 361–376, PMID 6967514, PMC 2185954 (freier Volltext).
  • A. Nelde, H. G. Rammensee, J. S. Walz: The Peptide Vaccine of the Future. In: Molecular & cellular proteomics : MCP. Band 20, 2021, S. 100022, doi:10.1074/mcp.R120.002309, PMID 33583769, PMC 7950068 (freier Volltext).
  • A. Patronov, I. Doytchinova: T-cell epitope vaccine design by immunoinformatics. In: Open Biology. 2013, Band 3, Nr. 1, S. 120139, doi:10.1098/rsob.120139, PMID 23303307, PMC 3603454 (freier Volltext).
  • G. L. Smith, M. Mackett, B. Moss: Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. In: Nature. Band 302, Nummer 5908, April 1983, S. 490–495, doi:10.1038/302490a0, PMID 6835382.
  • C. Y. Yong, H. K. Ong, S. K. Yeap, K. L. Ho, W. S. Tan: Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. In: Frontiers in Microbiology. Band 10, 2019, S. 1781, doi:10.3389/fmicb.2019.01781, PMID 31428074, PMC 6688523 (freier Volltext).
  • J. B. Ulmer, J. J. Donnelly, S. E. Parker, G. H. Rhodes, P. L. Felgner, V. J. Dwarki, S. H. Gromkowski, R. R. Deck, C. M. DeWitt, A. Friedman: Heterologous protection against influenza by injection of DNA encoding a viral protein. In: Science. Band 259, Nummer 5102, März 1993, S. 1745–1749, doi:10.1126/science.8456302, PMID 8456302.
  • F. Martinon, S. Krishnan, G. Lenzen, R. Magné, E. Gomard, J. G. Guillet, J. P. Lévy, P. Meulien: Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. In: European journal of immunology. Band 23, Nr. 7, Juli 1993, S. 1719–1722, doi:10.1002/eji.1830230749, PMID 8325342.
  • X. Zhou, P. Berglund, G. Rhodes, S. E. Parker, M. Jondal, P. Liljeström: Self-replicating Semliki Forest virus RNA as recombinant vaccine. In: Vaccine. Band 12, Nr. 16, Dezember 1994, S. 1510–1514, doi:10.1016/0264-410x(94)90074-4, PMID 7879415.
  • R. M. Conry, A. F. LoBuglio, M. Wright, L. Sumerel, M. J. Pike, F. Johanning, R. Benjamin, D. Lu, D. T. Curiel: Characterization of a messenger RNA polynucleotide vaccine vector. In: Cancer Research. Band 55, Nummer 7, April 1995, S. 1397–1400, PMID 7882341.
  • D. Eusébio, A. R. Neves, D. Costa, S. Biswas, G. Alves, Z. Cui,.. S: Methods to improve the immunogenicity of plasmid DNA vaccines. In: Drug discovery today. [elektronische Veröffentlichung vor dem Druck] Juni 2021, doi:10.1016/j.drudis.2021.06.008, PMID 34214667.
  • L. Li, N. Petrovsky: Molecular mechanisms for enhanced DNA vaccine immunogenicity. In: Expert review of vaccines. Band 15, Nummer 3, 2016, S. 313–329, doi:10.1586/14760584.2016.1124762, PMID 26707950, PMC 4955855 (freier Volltext).
  • Mark Bigham, Ray Copes: Thiomersal in vaccines: balancing the risk of adverse effects with the risk of vaccine-preventable disease. In: Drug Safety. Band 28, Nr. 2, 2005, S. 89–101, doi:10.2165/00002018-200528020-00001, PMID 15691220 (englisch).
  • Paul A. Offit: Thimerosal and vaccines--a cautionary tale. In: The New England Journal of Medicine. Band 357, Nr. 13, 27. September 2007, S. 1278–1279, doi:10.1056/NEJMp078187, PMID 17898096 (englisch).
  • S. Geoghegan, K. P. O’Callaghan, P. A. Offit: Vaccine Safety: Myths and Misinformation. In: Frontiers in Microbiology. Band 11, 2020, S. 372, doi:10.3389/fmicb.2020.00372, PMID 32256465, PMC 7090020 (freier Volltext).
  • P. Löffler: Review: Vaccine Myth-Buster – Cleaning Up With Prejudices and Dangerous Misinformation. In: Frontiers in immunology. Band 12, 2021, S. 663280, doi:10.3389/fimmu.2021.663280, PMID 34177902, PMC 8222972 (freier Volltext).
  • I. Ullah, K. S. Khan, M. J. Tahir, A. Ahmed, H. Harapan: Myths and conspiracy theories on vaccines and COVID-19: Potential effect on global vaccine refusals. In: Vacunas. Band 22, Nummer 2, Mai-August 2021, S. 93–97, doi:10.1016/j.vacun.2021.01.001, PMID 33727904, PMC 7951562 (freier Volltext).
  • Abhishek Vartak, Steven Sucheck: Recent Advances in Subunit Vaccine Carriers. In: Vaccines. Band 4, Nr. 2, 19. April 2016, ISSN 2076-393X, S. 12, doi:10.3390/vaccines4020012, PMID 27104575, PMC 4931629 (freier Volltext) – (mdpi.com [abgerufen am 12. Oktober 2021]).
  • L. J. Picker: Are effector memory T cells the key to an effective HIV/AIDS vaccine? In: EMBO reports. Band 15, Nummer 8, August 2014, S. 820–821, doi:10.15252/embr.201439052, PMID 24980866, PMC 4197036 (freier Volltext).
  • A. Lanzavecchia, F. Sallusto: Understanding the generation and function of memory T cell subsets. In: Current opinion in immunology. Band 17, Nummer 3, Juni 2005, S. 326–332, doi:10.1016/j.coi.2005.04.010, PMID 15886125 (Review).
  • F. Di Rosa, T. Gebhardt: Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. In: Frontiers in immunology. Band 7, 2016, S. 51, doi:10.3389/fimmu.2016.00051, PMID 26909081, PMC 4754413 (freier Volltext) (Review).
  • J. D. Lelièvre, Y. Lévy: HIV-1 prophylactic vaccines: state of the art. In: Journal of virus eradication. Band 2, Nummer 1, Januar 2016, S. 5–11, PMID 27482428, PMC 4946697 (freier Volltext) (Review).
  • S. C. Gilbert: T-cell-inducing vaccines – what's the future. In: Immunology. Band 135, Nummer 1, Januar 2012, S. 19–26, doi:10.1111/j.1365-2567.2011.03517.x, PMID 22044118, PMC 3246649 (freier Volltext) (Review).
  • J. T. Harty, V. P. Badovinac: Shaping and reshaping CD8+ T-cell memory. In: Nature Reviews Immunology. Band 8, Nummer 2, Februar 2008, S. 107–119, doi:10.1038/nri2251, PMID 18219309 (Review).
  • K. Früh, L. Picker: CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. In: Current opinion in immunology. Band 47, August 2017, S. 52–56, doi:10.1016/j.coi.2017.06.010, PMID 28734175, PMC 5626601 (freier Volltext) (Review).
  • Pravin Shende, Mansi Waghchaure: Combined vaccines for prophylaxis of infectious conditions. In: Artificial Cells, Nanomedicine, and Biotechnology. Band 47, Nr. 1, 2019, ISSN 2169-1401, S. 696–705, doi:10.1080/21691401.2019.1576709, PMID 30829068.
  • Birgit Scheel et al.: Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. In: European Journal of Immunology. Band 35, Nr. 5, Mai 2005, S. 1557–1566, doi:10.1002/eji.200425656, PMID 15832293.
  • Julio C. C. Lorenzi et al.: Intranasal vaccination with messenger RNA as a new approach in gene therapy: use against tuberculosis. In: BMC biotechnology. Band 10, 20. Oktober 2010, S. 77, doi:10.1186/1472-6750-10-77, PMID 20961459, PMC 2972232 (freier Volltext).
  • A. Bringmann, S. A. Held, A. Heine, P. Brossart: RNA vaccines in cancer treatment. In: Journal of Biomedicine and Biotechnology. Band 2010, Artikel 623687, doi:10.1155/2010/623687, PMID 20625504, PMC 2896711 (freier Volltext).
  • R. Gordon Douglas, Vijay B. Samant: The Vaccine Industry. In: Plotkin's Vaccines. 2018, doi:10.1016/B978-0-323-35761-6.00004-3, PMC 7151793 (freier Volltext), S. 41–50.e1.
  • S. Black, D. E. Bloom, D. C. Kaslow, S. Pecetta, R. Rappuoli: Transforming vaccine development. In: Seminars in immunology. Band 50, 08 2020, S. 101413, doi:10.1016/j.smim.2020.101413, PMID 33127296, PMC 7591868 (freier Volltext).
  • S. Barman, D. Soni, B. Brook, E. Nanishi, D. J. Dowling: Precision Vaccine Development: Cues From Natural Immunity. In: Frontiers in immunology. Band 12, 2021, S. 662218, doi:10.3389/fimmu.2021.662218, PMID 35222350, PMC 8866702 (freier Volltext).
  • M. Brisse, S. M. Vrba, N. Kirk, Y. Liang, H. Ly: Emerging Concepts and Technologies in Vaccine Development. In: Frontiers in immunology. Band 11, 2020, S. 583077, doi:10.3389/fimmu.2020.583077, PMID 33101309, PMC 7554600 (freier Volltext).

nobelprize.org

nytimes.com

pei.de

pharmaceutical-technology.com

pharmazeutische-zeitung.de

pschyrembel.de

redirecter.toolforge.org

  • Measurements of Non-gaseous air pollutants > Metals. In: npl.co.uk. National Physics Laboratory, archiviert vom Original am 29. September 2007; abgerufen am 28. Juni 2020.
  • Vaccines Explained. In: gavi.org. Gavi, die Impfallianz, 21. April 2021, archiviert vom Original (nicht mehr online verfügbar) am 7. Januar 2022; abgerufen am 6. Januar 2022 (englisch, Abschnitt „What different types of vaccines are there?“): „Whole virus vaccine […] Nucleic acid […] Viral vector […] Subunit, recombinant, polysaccharide and conjugate vaccines […] Toxoid vaccines“

rki.de

springer.com

link.springer.com

trillium.de

ugent.be

biblio.ugent.be

web.archive.org

  • Measurements of Non-gaseous air pollutants > Metals. In: npl.co.uk. National Physics Laboratory, archiviert vom Original am 29. September 2007; abgerufen am 28. Juni 2020.
  • Vaccines Explained. In: gavi.org. Gavi, die Impfallianz, 21. April 2021, archiviert vom Original (nicht mehr online verfügbar) am 7. Januar 2022; abgerufen am 6. Januar 2022 (englisch, Abschnitt „What different types of vaccines are there?“): „Whole virus vaccine […] Nucleic acid […] Viral vector […] Subunit, recombinant, polysaccharide and conjugate vaccines […] Toxoid vaccines“

who.int

zdb-katalog.de

zeit.de