C. Friedel, J. M. Crafts: Sur une nouvelle méthode générale de synthèse d’hydrocarbures, d’acétones, etc. In: Compt. Rend. Band 84, 1877, S. 1392, S. 1450.
Christopher P. Fredlake, Jacob M. Crosthwaite, Daniel G. Hert, Sudhir N. V. K. Aki, Joan F. Brennecke: Thermophysical Properties of Imidazolium-Based Ionic Liquids. In: Journal of Chemical & Engineering Data. Band49, Nr.4, Juli 2004, S.954–964, doi:10.1021/je034261a.
Ana P.M. Tavares, Oscar Rodriguez, Eugenia A. Macedo: New Generations of Ionic Liquids Applied to Enzymatic Biocatalysis. In: Ionic Liquids - New Aspects for the Future. InTech, 2013, ISBN 978-953-510-937-2, doi:10.5772/51897.
William Ramsay: XXXIV. On picoline and its derivatives. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Band2, Nr.11, Oktober 1876, S.269–281, doi:10.1080/14786447608639105.
Paul Murrill: HALIDES AND PERHALIDES OF THE PICOLINES. In: Journal of the American Chemical Society. Band21, Nr.10, Oktober 1899, S.828–854, doi:10.1021/ja02060a002.
John S. Wilkes: A short history of ionic liquids—from molten salts to neoteric solvents. In: Green Chemistry. Band4, Nr.2, 16. April 2002, S.73–80, doi:10.1039/b110838g.
S. Gabriel, J. Weiner: Ueber Vinylamin und Bromäthylamin. In: Berichte der deutschen chemischen Gesellschaft. Band21, Nr.2, Juli 1888, S.2664–2669, doi:10.1002/cber.18880210287.
Samuel Sugden, Henry Wilkins: CLXVII.—The parachor and chemical constitution. Part XII. Fused metals and salts. In: J. Chem. Soc. Band0, Nr.0, 1929, S.1291–1298, doi:10.1039/JR9290001291.
Frank H. Hurley, Thomas P. Wier: Electrodeposition of Metals from Fused Quaternary Ammonium Salts. In: Journal of The Electrochemical Society. Band98, Nr.5, 1951, S.203, doi:10.1149/1.2778132.
John T. Yoke, Joseph F. Weiss, Gordon Tollin: Reactions of Triethylamine with Copper(I) and Copper(II) Halides. In: Inorganic Chemistry. Band2, Nr.6, Dezember 1963, S.1210–1216, doi:10.1021/ic50010a028.
Nathan Kornblum, Gerald P. Coffey: The Reaction of Triethyloxonium Fluoroborate with the Sodium Salt of α-Pyridone 1. In: The Journal of Organic Chemistry. Band31, Nr.10, Oktober 1966, S.3449–3451, doi:10.1021/jo01348a536.
George W. Parshall: Catalysis in molten salt media. In: Journal of the American Chemical Society. Band94, Nr.25, Dezember 1972, S.8716–8719, doi:10.1021/ja00780a013.
R. J. Gale, B. Gilbert, R. A. Osteryoung: Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. In: Inorganic Chemistry. Band17, Nr.10, 1. Oktober 1978, S.2728–2729, doi:10.1021/ic50188a008.
John S. Wilkes, Joseph A. Levisky, Robert A. Wilson, Charles L. Hussey: Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. In: Inorganic Chemistry. Band21, Nr.3, März 1982, S.1263–1264, doi:10.1021/ic00133a078.
Towner B. Scheffler, Charles L. Hussey, Kenneth R. Seddon, Christopher M. Kear, Phillip D. Armitage: Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-). In: Inorganic Chemistry. Band22, Nr.15, Juli 1983, S.2099–2100, doi:10.1021/ic00157a001.
Slaton E. Fry, Norbert J. Pienta: Effects of molten salts on reactions. Nucleophilic aromatic substitution by halide ions in molten dodecyltributylphosphonium salts. In: Journal of the American Chemical Society. Band107, Nr.22, Oktober 1985, S.6399–6400, doi:10.1021/ja00308a045.
Jeffrey A. Boon, Joseph A. Levisky, J. Lloyd Pflug, John S. Wilkes: Friedel-Crafts reactions in ambient-temperature molten salts. In: The Journal of Organic Chemistry. Band51, Nr.4, Februar 1986, S.480–483, doi:10.1021/jo00354a013.
John S. Wilkes, Michael J. Zaworotko: Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. In: Journal of the Chemical Society, Chemical Communications. Nr.13, 1992, S.965, doi:10.1039/c39920000965.
Pierre Bonhôte, Ana-Paula Dias, Nicholas Papageorgiou, Kuppuswamy Kalyanasundaram, Michael Grätzel: Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts †. In: Inorganic Chemistry. Band35, Nr.5, Januar 1996, S.1168–1178, doi:10.1021/ic951325x.
G. Wytze Meindersma, Matthias Maase, André B. De Haan: Ionic Liquids. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2007, ISBN 978-3-527-30673-2, S.547–575, doi:10.1002/14356007.l14_l01.
Peter Wasserscheid, Wilhelm Keim: Ionic Liquids—New “Solutions” for Transition Metal Catalysis. In: Angewandte Chemie International Edition. Band39, Nr.21, 2000, S.3772–3789, doi:10.1002/1521-3773(20001103)39:213.0.CO;2-5.
Sanhu Zhao, Xiaoming Xu, Lu Zheng, Hai Liu: An efficient ultrasonic-assisted synthesis of imidazolium and pyridinium salts based on the Zincke reaction. In: Ultrasonics Sonochemistry. Band17, Nr.4, 2010, S.685–689, doi:10.1016/j.ultsonch.2009.12.019.
Julio Cezar Pastre, Carlos Roque D. Correia, Yves Génisson: Non-occurrence of a Zincke-like process upon treatment of 1-(2,4-dinitrophenyl)-3-methylimidazolium chloride with a chiral primary amine. In: Green Chemistry. Band10, Nr.8, 2008, S.885–889, doi:10.1039/B804650F.
Joan Fuller, Richard T. Carlin, Hugh C. De Long, Dustin Haworth: Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. In: Journal of the Chemical Society, Chemical Communications. Nr.3, 1994, S.299, doi:10.1039/c39940000299.
Immaculada Dinarès, Cristina Garcia de Miguel, Anna Ibáñez, Neus Mesquida, Ermitas Alcalde: Imidazolium ionic liquids: A simple anion exchange protocol. In: Green Chemistry. Band11, Nr.10, 2009, S.1507, doi:10.1039/b915743n.
Tamar L. Greaves, Calum J. Drummond: Protic Ionic Liquids: Properties and Applications. In: Chemical Reviews. Band108, Nr.1, Januar 2008, S.206–237, doi:10.1021/cr068040u.
Sandip K. Singh, Anthony W. Savoy: Ionic liquids synthesis and applications: An overview. In: Journal of Molecular Liquids. Band297, 2020, S.112038, doi:10.1016/j.molliq.2019.112038.
Adam J. Greer, Johan Jacquemin, Christopher Hardacre: Industrial Applications of Ionic Liquids. In: Molecules. Band25, Nr.21, 9. November 2020, S.5207, doi:10.3390/molecules25215207, PMID 33182328, PMC 7664896 (freier Volltext).
Paul Nancarrow, Hanin Mohammed: Ionic Liquids in Space Technology - Current and Future Trends. In: ChemBioEng Reviews. Band4, Nr.2, April 2017, S.106–119, doi:10.1002/cben.201600021.
Qinghua Zhang, Jean’ne M. Shreeve: Energetic Ionic Liquids as Explosives and Propellant Fuels: A New Journey of Ionic Liquid Chemistry. In: Chemical Reviews. Band114, Nr.20, 22. Oktober 2014, S.10527–10574, doi:10.1021/cr500364t.
Masayoshi Watanabe, Morgan L. Thomas, Shiguo Zhang, Kazuhide Ueno, Tomohiro Yasuda: Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. In: Chemical Reviews. Band117, Nr.10, 24. Mai 2017, S.7190–7239, doi:10.1021/acs.chemrev.6b00504.
Yansong Zhao, Tobias Bostrom: Application of Ionic Liquids in Solar Cells and Batteries: A Review. In: Current Organic Chemistry. Band19, Nr.6, 17. April 2015, S.556–566, doi:10.2174/1385272819666150127002529.
Md. Iqbal Hossain, G. J. Blanchard: Ionic Liquids Exhibit the Piezoelectric Effect. In: The Journal of Physical Chemistry Letters. Band14, Nr.11, 23. März 2023, ISSN1948-7185, S.2731–2735, doi:10.1021/acs.jpclett.3c00329.
Pamela M. Dean, Jennifer M. Pringle, Douglas R. MacFarlane: Structural analysis of low melting organic salts: perspectives on ionic liquids. In: Physical Chemistry Chemical Physics. Band12, Nr.32, 2010, S.9144, doi:10.1039/c003519j.
John D. Holbrey, W. Matthew Reichert, Mark Nieuwenhuyzen, Suzanne Johnson, Kenneth R. Seddon, Robin D. Rogers: Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallization. In: Chemical Communications. Nr.14, 2003, S.1636–1637, doi:10.1039/B304543A.
Satoshi Hayashi, Ryosuke Ozawa, Hiro-o Hamaguchi: Raman Spectra, Crystal Polymorphism, and Structure of a Prototype Ionic-liquid [bmim]Cl. In: Chemistry Letters. Band32, Nr.6, 2003, S.498–499, doi:10.1246/cl.2003.498.
Hiro-o Hamaguchi, Ryosuke Ozawa: Advances in Chemical Physics. John Wiley & Sons, Ltd, 2005, ISBN 978-0-471-73946-3, Structure of Ionic Liquids and Ionic Liquid Compounds: Are Ionic Liquids Genuine Liquids in the Conventional Sense?, S.85–104, doi:10.1002/0471739464.ch3.
Marijana Blesic, Małgorzata Swadźba-Kwaśny, John D. Holbrey, José N. Canongia Lopes, Kenneth R. Seddon, Luís Paulo N. Rebelo: New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n+1mim][CmH2m+1SO3]: mesomorphism and aggregation. In: Physical Chemistry Chemical Physics. Band11, Nr.21, 2009, S.4260–4268, doi:10.1039/B822341F.
Alexander M. Smith, Kevin R. J. Lovelock, Nitya Nand Gosvami, Peter Licence, Andrew Dolan, Tom Welton, Susan Perkin: Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. In: The Journal of Physical Chemistry Letters. Band4, Nr.3, 2013, S.378–382, doi:10.1021/jz301965d.
R. Blossey, A. C. Maggs, R. Podgornik: Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations. In: Physical Review E. Band95, Nr.6, 2017, S.060602, doi:10.1103/PhysRevE.95.060602.
Ryosuke Ozawa, Satoshi Hayashi, Satyen Saha, Akiko Kobayashi, Hiro-o Hamaguchi: Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. In: Chemistry Letters. Band32, Nr.10, 2003, S.948–949, doi:10.1246/cl.2003.948.
Sankaran Murugesan, Oliver A. Quintero, Brendan P. Chou, Penghao Xiao, Kyusung Park: Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. In: J. Mater. Chem. A. Band2, Nr.7, 2014, S.2194–2201, doi:10.1039/C3TA15010K.
Tatjana Heckel, Andreas Winkel, René Wilhelm: Chiral ionic liquids based on nicotine for the chiral recognition of carboxylic acids. In: Tetrahedron: Asymmetry. Band24, Nr.18, 2013, S.1127–1133, doi:10.1016/j.tetasy.2013.07.021.
Zhichang Liu, Pengcheng Hu, Xianghai Meng, Rui Zhang, Huiqing Yue, Chunming Xu, Yufeng Hu: Synthesis and properties of switchable polarity ionic liquids based on organic superbases and fluoroalcohols. In: Chemical Engineering Science. Band108, 2014, S.176–182, doi:10.1016/j.ces.2013.12.040.
Suqin Hu, Tao Jiang, Zhaofu Zhang, Anlian Zhu, Buxing Han, Jinliang Song, Ye Xie, Wenjing Li: Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. In: Tetrahedron Letters. Band48, Nr.32, 2007, S.5613–5617, doi:10.1016/j.tetlet.2007.06.051.
Yajnaseni Biswas, Palash Banerjee, Tarun K. Mandal: From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. In: Macromolecules. Band52, Nr.3, 2019, S.945–958, doi:10.1021/acs.macromol.8b02351.
Qiu-Han Lin, Yu-Chuan Li, Ya-Yu Li, Zhu Wang, Wei Liu, Cai Qi, Si-Ping Pang: Energetic salts based on 1-amino-1,2,3-triazole and 3-methyl-1-amino-1,2,3-triazole. In: Journal of Materials Chemistry. Band22, Nr.2, 2011, S.666–674, doi:10.1039/C1JM14322K.
Maren Muntzeck, René Wilhelm: Protic ionic liquids as catalysts for a three-component coupling/hydroarylation/dehydrogenation tandem reaction. In: Zeitschrift für Naturforschung B. Band73, Nr.7, 2018, S.515–519, doi:10.1515/znb-2018-0084.
Zhenyou Gui, Nanette Zahrtmann, Shunmugavel Saravanamurugan, Ines Reyero, Zhiwen Qi, Miguel A. Bañares, Anders Riisager, Eduardo J. Garcia-Suarez: Brønsted Acid Ionic Liquids (BAILs) as Efficient and Recyclable Catalysts in the Conversion of Glycerol to Solketal at Room Temperature. In: ChemistrySelect. Band1, Nr.18, 2016, S.5869–5873, doi:10.1002/slct.201601600.
Masahiro Yoshizawa-Fujita, Douglas R. MacFarlane, Patrick C. Howlett, Maria Forsyth: A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry. In: Electrochemistry Communications. Band8, Nr.3, 2006, S.445–449, doi:10.1016/j.elecom.2006.01.008.
A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid: Deep desulfurization of diesel fuel by extraction with ionic liquids. In: Chemical Communications. Nr.23, 2001, S.2494–2495, doi:10.1039/B108411A.
Carmela Aprile, Francesco Giacalone, Michelangelo Gruttadauria, Adriana Mossuto Marculescu, Renato Noto, Jefferson D. Revell, Helma Wennemers: New ionic liquid-modified silica gels as recyclable materials for L-proline- or H–Pro–Pro–Asp–NH2-catalyzed aldol reaction. In: Green Chemistry. Band9, Nr.12, 2007, S.1328–1334, doi:10.1039/B709471J.
Fred van Rantwijk, Roger A. Sheldon: Biocatalysis in Ionic Liquids. In: Chemical Reviews. Band107, Nr.6, Juni 2007, S.2757–2785, doi:10.1021/cr050946x.
Christoph Roosen, Pia Müller, Lasse Greiner: Ionic liquids in biotechnology: applications and perspectives for biotransformations. In: Applied Microbiology and Biotechnology. Band81, Nr.4, Dezember 2008, S.607–614, doi:10.1007/s00253-008-1730-9, PMID 18979095, PMC 7419490 (freier Volltext).
Thomas Waldmann, Hsin-Hui Huang, Harry E. Hoster, Oliver Höfft, Frank Endres: Imaging an Ionic Liquid Adlayer by Scanning Tunneling Microscopy at the Solid|Vacuum Interface. In: ChemPhysChem. Band12, Nr.14, 4. Oktober 2011, S.2565–2567, doi:10.1002/cphc.201100413.
Wu Xu, Xilin Chen, Fei Ding, Jie Xiao, Deyu Wang: Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications. In: Journal of Power Sources. Band213, September 2012, S.304–316, doi:10.1016/j.jpowsour.2012.04.031.
Michel Armand, Frank Endres, Douglas R. MacFarlane, Hiroyuki Ohno, Bruno Scrosati: Ionic-liquid materials for the electrochemical challenges of the future. In: Nature Materials. Band8, Nr.8, August 2009, S.621–629, doi:10.1038/nmat2448.
A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé: Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. In: Journal of Power Sources. Band195, Nr.3, Februar 2010, S.845–852, doi:10.1016/j.jpowsour.2009.08.056.
Hao Zhang, Jin Wu, Jun Zhang, Jiasong He: 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. In: Macromolecules. Band38, 2005, S.8272–8277, doi:10.1021/ma0505676.
Bin Zhao, Lasse Greiner, Walter Leitner: Cellulose solubilities in carboxylate-based ionic liquids. In: RSC Advances. Band2, 2012, S.2476–2479, doi:10.1039/C2RA01224C.
Y. Su, H. M. Brown, X. Huang, X. Zhou, J. E. Amonette, Z. C. Zhang: Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. In: Appl. Catalysis. A 361, 2009, S. 117–122. doi:10.1016/j.apcata.2009.04.002
I. M. Marrucho, L. C. Branco, L. P. N. Rebelo: Ionic Liquids in Pharmaceutical Applications. In: Annual Review of Chemical and Biomolecular Engineering. Band5, Nr.1, 7. Juni 2014, S.527–546, doi:10.1146/annurev-chembioeng-060713-040024.
Jelena Stoimenovski, Douglas R. MacFarlane, Katharina Bica, Robin D. Rogers: Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. In: Pharmaceutical Research. Band27, Nr.4, April 2010, S.521–526, doi:10.1007/s11095-009-0030-0.
Sónia N. Pedro, Carmen S. R. Freire, Armando J. D. Silvestre, Mara G. Freire: The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. In: International Journal of Molecular Sciences. Band21, Nr.21, 5. November 2020, S.8298, doi:10.3390/ijms21218298, PMID 33167474, PMC 7663996 (freier Volltext).
Whitney L. Hough, Marcin Smiglak, Héctor Rodríguez, Richard P. Swatloski, Scott K. Spear: The third evolution of ionic liquids: active pharmaceutical ingredients. In: New Journal of Chemistry. Band31, Nr.8, 27. Juli 2007, S.1429–1436, doi:10.1039/B706677P.
J. Stoimenovski, D. R. MacFarlane, K. Bica, R. D. Rogers: Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. In: Pharmaceutical Research. Band27, 2010, S.521–526, doi:10.1007/s11095-009-0030-0.
Yasushi Miwa, Hidetoshi Hamamoto, Tatsuhiro Ishida: Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. In: European Journal of Pharmaceutics and Biopharmaceutics. Band102, 2016, S.92–100, doi:10.1016/j.ejpb.2016.03.003.
Ksenia S. Egorova, Evgeniy G. Gordeev, Valentine P. Ananikov: Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. In: Chemical Reviews. Band117, Nr.10, 2017, S.7132–7189, doi:10.1021/acs.chemrev.6b00562.
Caroline Emilie Paul, Vicente Gotor Fernández: Biocatalysis and Biotransformation in Ionic Liquids. In: Ionic Liquids in Lipid Processing and Analysis. Elsevier, 2016, ISBN 978-1-63067-047-4, S.11–58, doi:10.1016/b978-1-63067-047-4.00002-7.
R. Madeira Lau, F. Van Rantwijk, K. R. Seddon, R. A. Sheldon: Lipase-Catalyzed Reactions in Ionic Liquids. In: Organic Letters. Band2, Nr.26, Dezember 2000, S.4189–4191, doi:10.1021/ol006732d.
Eduardo García-Verdugo, Belen Altava, M. Isabel Burguete, Pedro Lozano, S. V. Luis: Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. In: Green Chemistry. Band17, Nr.5, 2015, S.2693–2713, doi:10.1039/C4GC02388A.
Tom Welton: Solvents and sustainable chemistry. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Band471, Nr.2183, 8. November 2015, S.20150502, doi:10.1098/rspa.2015.0502, PMID 26730217, PMC 4685879 (freier Volltext) – (englisch).
Hye Kyung Timken, Huping Luo, Bong-Kyu Chang, Elizabeth Carter, Matthew Cole: ISOALKY™ Technology: Next-Generation Alkylate Gasoline Manufacturing Process Technology Using Ionic Liquid Catalyst. In: Commercial Applications of Ionic Liquids. Springer International Publishing, Cham 2020, ISBN 978-3-03035244-8, S.33–47, doi:10.1007/978-3-030-35245-5_2.
Jiexin Zou, Ning Han, Jiangyan Yan, Qi Feng, Yajun Wang: Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. In: Electrochemical Energy Reviews. Band3, Nr.4, Dezember 2020, S.690–729, doi:10.1007/s41918-020-00077-0.
Marzena Dzida, Małgorzata Musiał, Edward Zorębski, Sylwia Jężak, Justyna Skowronek: Comparative Study of the High Pressure Thermophysical Properties of 1-Ethyl-3-methylimidazolium and 1,3-Diethylimidazolium Ethyl Sulfates for Use as Sustainable and Efficient Hydraulic Fluids. In: ACS Sustainable Chemistry & Engineering. Band6, Nr.8, 6. August 2018, S.10934–10943, doi:10.1021/acssuschemeng.8b02318.
Nasrin Arjomand Kermani, Irina Petrushina, Aleksey Nikiforov, Jens Oluf Jensen, Masoud Rokni: Corrosion behavior of construction materials for ionic liquid hydrogen compressor. In: International Journal of Hydrogen Energy. Band41, Nr.38, Oktober 2016, S.16688–16695, doi:10.1016/j.ijhydene.2016.06.221.
Qiu-Han Lin, Yu-Chuan Li, Ya-Yu Li, Zhu Wang, Wei Liu: Energetic salts based on 1-amino-1,2,3-triazole and 3-methyl-1-amino-1,2,3-triazole. In: Journal of Materials Chemistry. Band22, Nr.2, 8. Dezember 2011, S.666–674, doi:10.1039/C1JM14322K.
Stefan Schneider, Tom Hawkins, Yonis Ahmed, Stephan Deplazes, Jeff Mills: Ionic Liquid Fuels for Chemical Propulsion. In: ACS Symposium Series. Band1117. American Chemical Society, Washington, DC 2012, ISBN 978-0-8412-2763-7, S.1–25, doi:10.1021/bk-2012-1117.ch001.
Stefan Schneider, Tommy Hawkins, Michael Rosander, Ghanshyam Vaghjiani, Steven Chambreau: Ionic Liquids as Hypergolic Fuels. In: Energy & Fuels. Band22, Nr.4, 1. Juli 2008, S.2871–2872, doi:10.1021/ef800286b.
Thi Phuong Thuy Pham, Chul-Woong Cho, Yeoung-Sang Yun: Environmental fate and toxicity of ionic liquids: A review. In: Water Research. Band44, Nr.2, 2010, S.352–372, doi:10.1016/j.watres.2009.09.030.
Sónia P.M. Ventura, Carolina S. Marques, Andreia A. Rosatella, Carlos A.M. Afonso, Fernando Gonçalves: Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. In: Ecotoxicology and Environmental Safety. Band76, Februar 2012, S.162–168, doi:10.1016/j.ecoenv.2011.10.006.
Jolanta Flieger, Michał Flieger: Ionic Liquids Toxicity—Benefits and Threats. In: International Journal of Molecular Sciences. Band21, Nr.17, 29. August 2020, S.6267, doi:10.3390/ijms21176267, PMID 32872533, PMC 7504185 (freier Volltext).
N. Gathergood, P. J. Scammells: Design and Preparation of Room-Temperature Ionic Liquids Containing Biodegradable Side Chains. In: Australian Journal of Chemistry. Band55, Nr.9, 2002, S.557, doi:10.1071/CH02148.
Andrew S. Wells, Vyvyan T. Coombe: On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. In: Organic Process Research & Development. Band10, Nr.4, Juli 2006, S.794–798, doi:10.1021/op060048i.
Michiaki Matsumoto, Kenji Mochiduki, Kei Fukunishi, Kazuo Kondo: Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. In: Separation and Purification Technology. Band40, Nr.1, November 2004, S.97–101, doi:10.1016/j.seppur.2004.01.009.
Stefan Stolte, Salha Abdulkarim, Jürgen Arning, Anne-Katrin Blomeyer-Nienstedt, Ulrike Bottin-Weber, Marianne Matzke, Johannes Ranke, Bernd Jastorff, Jorg Thöming: Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. In: Green Chemistry. Band10, Nr.2, 2008, S.214–224, doi:10.1039/B713095C.
Jennifer Neumann, Olav Grundmann, Jorg Thöming, Michael Schulte, Stefan Stolte: Anaerobic biodegradability of ionic liquid cations under denitrifying conditions. In: Green Chemistry. Band12, Nr.4, 2010, S.620–627, doi:10.1039/B918453H.
Concepcion Abrusci, Jose Palomar, Jesus L. Pablos, Francisco Rodriguez, Fernando Catalina: Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. In: Green Chemistry. Band13, Nr.3, 2011, S.709–717, doi:10.1039/C0GC00766H.
C. Zhang, H. Wang, S. V. Malhotra, C. J. Dodge, A. J. Francis: Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. In: Green Chemistry. Band12, Nr.5, 2010, S.851–858, doi:10.1039/B924264C.
M. Markiewicz, J. Henke, A. Brillowska-Dąbrowska, S. Stolte, J. Łuczak, C. Jungnickel: Bacterial consortium and axenic cultures isolated from activated sewage sludge for biodegradation of imidazolium-based ionic liquid. In: International Journal of Environmental Science and Technology. Band11, Nr.7, 2014, S.1919–1926, doi:10.1007/s13762-013-0390-1.
Joana M. Gomes, Simone S. Silva, Rui L. Reis: Biocompatible ionic liquids: fundamental behaviours and applications. In: Chemical Society Reviews. Band48, Nr.15, 2019, S.4317–4335, doi:10.1039/C9CS00016J.
Brezana Peric, Jordi Sierra, Esther Martí, Robert Cruañas, Maria Antonia Garau, Jürgen Arning, Ulrike Bottin-Weber, Stefan Stolte: (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. In: Journal of Hazardous Materials. Band261, 2013, S.99–105, doi:10.1016/j.jhazmat.2013.06.070.
Nadège Ferlin, Matthieu Courty, Sylvain Gatard, Marcel Spulak, Brid Quilty, Ian Beadham, Mukund Ghavre, Annette Haiß, Klaus Kümmerer, Nicholas Gathergood, Sandrine Bouquillon: Biomass derived ionic liquids: synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes. In: Tetrahedron. Band69, Nr.30, 2013, S.6150–6161, doi:10.1016/j.tet.2013.05.054.
Xue-Dan Hou, Qiu-Ping Liu, Thomas J. Smith, Ning Li, Min-Hua Zong: Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids. In: PLOS ONE. Band8, Nr.3, 2013, S.e59145, doi:10.1371/journal.pone.0059145, PMID 23554985.
espacenet.com
worldwide.espacenet.com
Patent US4122245A: AlCl3 /1-alkyl pyridinium chloride room temperature electrolytes. Veröffentlicht am 24. Oktober 1978, Erfinder: John C. Nardi, Charles L. Hussey, Lowell A. King.
Patent US7432409B2: Alkylation process using chloroaluminate ionic liquid catalysts. Veröffentlicht am 21. Dezember 2004, Erfinder: S. Elomari, S. Trumbull, H. K. C. Timken, R. Cleverdon.
google.de
books.google.de
Jan C. Kuschnerow: Einsatz ionischer Fluide als Katalysator in der homogenen Reaktivdestillation unter Berücksichtigung reaktionskinetischer Aspekte. GRIN Verlag, 2011, ISBN 978-3-640-94255-8, S.14 (eingeschränkte Vorschau in der Google-Buchsuche).
Adam J. Greer, Johan Jacquemin, Christopher Hardacre: Industrial Applications of Ionic Liquids. In: Molecules. Band25, Nr.21, 9. November 2020, S.5207, doi:10.3390/molecules25215207, PMID 33182328, PMC 7664896 (freier Volltext).
Christoph Roosen, Pia Müller, Lasse Greiner: Ionic liquids in biotechnology: applications and perspectives for biotransformations. In: Applied Microbiology and Biotechnology. Band81, Nr.4, Dezember 2008, S.607–614, doi:10.1007/s00253-008-1730-9, PMID 18979095, PMC 7419490 (freier Volltext).
Sónia N. Pedro, Carmen S. R. Freire, Armando J. D. Silvestre, Mara G. Freire: The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. In: International Journal of Molecular Sciences. Band21, Nr.21, 5. November 2020, S.8298, doi:10.3390/ijms21218298, PMID 33167474, PMC 7663996 (freier Volltext).
Tom Welton: Solvents and sustainable chemistry. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Band471, Nr.2183, 8. November 2015, S.20150502, doi:10.1098/rspa.2015.0502, PMID 26730217, PMC 4685879 (freier Volltext) – (englisch).
Jolanta Flieger, Michał Flieger: Ionic Liquids Toxicity—Benefits and Threats. In: International Journal of Molecular Sciences. Band21, Nr.17, 29. August 2020, S.6267, doi:10.3390/ijms21176267, PMID 32872533, PMC 7504185 (freier Volltext).
Xue-Dan Hou, Qiu-Ping Liu, Thomas J. Smith, Ning Li, Min-Hua Zong: Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids. In: PLOS ONE. Band8, Nr.3, 2013, S.e59145, doi:10.1371/journal.pone.0059145, PMID 23554985.
Md. Iqbal Hossain, G. J. Blanchard: Ionic Liquids Exhibit the Piezoelectric Effect. In: The Journal of Physical Chemistry Letters. Band14, Nr.11, 23. März 2023, ISSN1948-7185, S.2731–2735, doi:10.1021/acs.jpclett.3c00329.