K-Means-Algorithmus (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "K-Means-Algorithmus" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
1,747th place
1,498th place
3,707th place
5,342nd place
low place
8,952nd place
26th place
153rd place
179th place
460th place
1,933rd place
3,857th place
low place
low place
low place
low place

dlib.net (Global: low place; German: low place)

doi.org (Global: 2nd place; German: 3rd place)

  • S. P. Lloyd: Least square quantization in PCM. In: Bell Telephone Laboratories Paper. 1957., später erst in einer Zeitschrift:
    S. P. Lloyd: Least squares quantization in PCM. In: IEEE Transactions on Information Theory. 2. Auflage. Band 28, 1982, S. 129–137, doi:10.1109/TIT.1982.1056489 (cs.toronto.edu [PDF; 1,3 MB; abgerufen am 15. April 2009]).
  • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu: An efficient k-means clustering algorithm: Analysis and implementation. In: IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 24, 2002, S. 881–892, doi:10.1109/TPAMI.2002.1017616 (englisch, umd.edu [PDF; abgerufen am 24. April 2009]).

jstor.org (Global: 26th place; German: 153rd place)

  • J. A. Hartigan, M. A. Wong: Algorithm AS 136: A K-Means Clustering Algorithm. In: Journal of the Royal Statistical Society, Series C (Applied Statistics). 1. Auflage. Band 28, 1979, S. 100–108, JSTOR:2346830.

projecteuclid.org (Global: 3,707th place; German: 5,342nd place)

  • J. B. MacQueen: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Band 1. University of California Press, 1967, S. 281–297 (projecteuclid.org [abgerufen am 7. April 2009]).

scikit-image.org (Global: low place; German: low place)

stanford.edu (Global: 179th place; German: 460th place)

theory.stanford.edu

  • David Arthur, Sergei Vassilvitskii: K-means++: The Advantages of Careful Seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA 2007, ISBN 978-0-89871-624-5, S. 1027–1035 (stanford.edu [PDF; abgerufen am 27. März 2015]).

toronto.edu (Global: low place; German: 8,952nd place)

cs.toronto.edu

ucsd.edu (Global: 1,933rd place; German: 3,857th place)

www-cse.ucsd.edu

  • C. Elkan: Using the triangle inequality to accelerate k-means. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML). 2003 (ucsd.edu [PDF; 88 kB]).

umd.edu (Global: 1,747th place; German: 1,498th place)

cs.umd.edu

  • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu: An efficient k-means clustering algorithm: Analysis and implementation. In: IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 24, 2002, S. 881–892, doi:10.1109/TPAMI.2002.1017616 (englisch, umd.edu [PDF; abgerufen am 24. April 2009]).
  • T. Kanungo, D. Mount, N. Netanyahux, C. Piatko, R. Silverman, A. Wu A Local Search Approximation Algorithm for k-Means Clustering. (PDF; 170 kB) In: Computational Geometry: Theory and Applications, 2004.