Large Language Model (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Large Language Model" in German language version.

refsWebsite
Global rank German rank
69th place
189th place
2nd place
3rd place
low place
low place
1,559th place
1,248th place
2,503rd place
2,871st place
2,106th place
139th place
1,131st place
1,159th place
3,464th place
1,122nd place
687th place
41st place
54th place
107th place
low place
low place
612th place
686th place
1,943rd place
4,790th place
2,263rd place
1,625th place
low place
low place
low place
low place
low place
low place
123rd place
6th place
4th place
7th place
234th place
203rd place

amacad.org

analyticsindiamag.com

arxiv.org

  • Guandong Feng, Guoliang Zhu, Shengze Shi, Yue Sun, Zhongyi Fan, Sulin Gao, and Jun Hu: Robust NL-to-Cypher Translation for KBQA: Harnessing Large Language Model with Chain of Prompts. In: Haofen Wang, Xianpei Han, Ming Liu, Gong Cheng, Yongbin Liu, Ningyu Zhang: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence. 8th China Conference, CCKS 2023, Shenyang, China, August 24–27, 2023, Revised Selected Papers Springer, 2023, ISBN 978-981-9972-23-4, S. 317 ff. (hier S. 319) ("LLMs can perform various natural language tasks, such as understanding, summarizing, translating, predicting, and creating texts, by taking an input text and repeatedly predicting the next token or word"); vgl. Eight Things to Know about Large Language Models.
  • Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio: Neural Machine Translation by Jointly Learning to Align and Translate. In: Arxiv. 1. September 2014, abgerufen am 5. Februar 2024 (englisch).
  • Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi: BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. 2023, doi:10.48550/ARXIV.2301.12597, arxiv:2301.12597.

bigdata-insider.de

  • Was ist BERT? – von Stefan Luber, über Bigdata-Insider, am 10. Mai 2022.

datascientest.com

doi.org

  • Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi: BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. 2023, doi:10.48550/ARXIV.2301.12597, arxiv:2301.12597.
  • Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang, Stephen Roller, Naman Goyal, Omer Levy, Luke Zettlemoyer: Scaling Laws for Generative Mixed-Modal Language Models. 10. Januar 2023, doi:10.48550/ARXIV.2301.03728.
  • Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, Yarin Gal: AI models collapse when trained on recursively generated data. In: Nature. Band 631, Nr. 8022, 25. Juli 2024, ISSN 0028-0836, S. 755–759, doi:10.1038/s41586-024-07566-y, PMID 39048682, PMC 11269175 (freier Volltext) – (nature.com [abgerufen am 27. Juli 2024]).

euronews.com

forbes.com

google.de

  • Guandong Feng, Guoliang Zhu, Shengze Shi, Yue Sun, Zhongyi Fan, Sulin Gao, and Jun Hu: Robust NL-to-Cypher Translation for KBQA: Harnessing Large Language Model with Chain of Prompts. In: Haofen Wang, Xianpei Han, Ming Liu, Gong Cheng, Yongbin Liu, Ningyu Zhang: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence. 8th China Conference, CCKS 2023, Shenyang, China, August 24–27, 2023, Revised Selected Papers Springer, 2023, ISBN 978-981-9972-23-4, S. 317 ff. (hier S. 319) ("LLMs can perform various natural language tasks, such as understanding, summarizing, translating, predicting, and creating texts, by taking an input text and repeatedly predicting the next token or word"); vgl. Eight Things to Know about Large Language Models.

huggingface.co

ibm.com

nature.com

neurips.cc

proceedings.neurips.cc

nih.gov

ncbi.nlm.nih.gov

nvidia.com

blogs.nvidia.com

nzz.ch

openai.com

ourworldindata.org

technologyreview.com

zdb-katalog.de