Laurinsäure (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Laurinsäure" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
4th place
7th place
68th place
29th place
813th place
69th place
low place
low place

dguv.de

gestis.dguv.de

doi.org

  • C.D. Cappa, E.R. Lovejoy, A.R. Ravishankara: Evaporation Rates and Vapor Pressures of the Even-Numbered C8–C18 Monocarboxylic Acids in J. Phys. Chem. A 112 (2008) 3959–3964, doi:10.1021/jp710586m.
  • Carter Litchfield, Earline Miller, R. D. Harlow, Raymond Reiser: The triglyceride composition of 17 seed fats rich in octanoic, decanoic, or lauric acid. In: Lipids. Band 2, Nr. 4, Juli 1967, S. 345–350, doi:10.1007/BF02532124.
  • Jefferson Maia Feitosa, Thamires Sousa de Alencar Silva, Ana Elizabete Fonseca de Xavier, Wendel Clei Souza Rodrigues, Amanda Carolline Esquerdo da Silva, Cássia Valéria Pinheiro Corrêa, Fagner Sousa de Aguiar, Rosa Helena Veras Mourão, Edilene Gadelha de Oliveira, Kariane Mendes Nunes: Evaluation of the quality of Amazonian butters as sustainable raw materials for applications in bioproducts. In: Revista de Ciências Farmacêutica Básica e Aplicadas - RCFBA. Band 42, 2021, doi:10.4322/2179-443X.0708.
  • F. D. Gunstone, S. R. Steward, J. A. Cornelius, T. W. Hammonds: New Tropical Seed Oils. IV—Component acids of leguminous and other seed oils including useful sources of crepenynic and dehydrocrepenynic acid. In: Journal of the Science of Food and Agriculture. Band 23, Nr. 1, Januar 1972, S. 53–60, doi:10.1002/jsfa.2740230108.
  • Anselmo Queiroz Alves, Valdemiro Amaro da Silva, Alexandre José Silva Góes, Mariza Severina Silva, Gibson Gomes de Oliveira, Isla Vanessa Gomes Alves Bastos, Antonio Gomes de Castro Neto, Antonio José Alves: The Fatty Acid Composition of Vegetable Oils and Their Potential Use in Wound Care. In: Advances in Skin & Wound Care. Band 32, Nr. 8, August 2019, S. 1–8, doi:10.1097/01.ASW.0000557832.86268.64.
  • A. E. Thompson, D. A. Dierig, S. J. Knapp, R. Kleiman: Variation in fatty acid content and seed weight in some lauric acid rich Cuphea species. In: Journal of the American Oil Chemists' Society. Band 67, Nr. 10, Oktober 1990, S. 611–617, doi:10.1007/BF02540409.
  • Jiang-Ning Hu, Bing Zhang, Xue-Mei Zhu, Jing Li, Ya-Wei Fan, Rong Liu, Liang Tang, Ki-Teak Lee, Ze-Yuan Deng: Characterization of Medium-Chain Triacylglycerol (MCT)-Enriched Seed Oil from Cinnamomum camphora (Lauraceae) and Its Oxidative Stability. In: Journal of Agricultural and Food Chemistry. Band 59, Nr. 9, 11. Mai 2011, S. 4771–4778, doi:10.1021/jf200188r.
  • R.C. Pinheiro, L.F. Ballesteros, M.A. Cerqueira, A.M.C. Rodrigues, J.A. Teixeira, L.H.M. Silva: Peach palm (Bactris gasipaes Kunth) and mammee apple (Mammea americana L.) seeds: Properties and potential of application in industry. In: LWT. Band 170, Dezember 2022, S. 114089, doi:10.1016/j.lwt.2022.114089.
  • Antonio Franco, Rosanna Salvia, Carmen Scieuzo, Eric Schmitt, Antonella Russo, Patrizia Falabella: Lipids from Insects in Cosmetics and for Personal Care Products. In: Insects. Band 13, Nr. 1, 30. Dezember 2021, S. 41, doi:10.3390/insects13010041, PMID 35055884, PMC 8779901 (freier Volltext).
  • Judith L Kinderlerer: Degradation of the Lauric acid oils. In: International Biodeterioration & Biodegradation. Band 33, Nr. 4, Januar 1994, S. 345–354, doi:10.1016/0964-8305(94)90012-4.
  • Carol L. Fischer, David R. Drake, Deborah V. Dawson, Derek R. Blanchette, Kim A. Brogden, Philip W. Wertz: Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria. In: Antimicrobial Agents and Chemotherapy. Band 56, Nr. 3, März 2012, S. 1157–1161, doi:10.1128/AAC.05151-11, PMID 22155833, PMC 3294957 (freier Volltext).
  • K. J. Kingsbury, S. Paul, A. Crossley, D. M. Morgan: The fatty acid composition of human depot fat. In: Biochemical Journal. Band 78, Nr. 3, 1. März 1961, S. 541–550, doi:10.1042/bj0780541, PMID 13756126, PMC 1205373 (freier Volltext).
  • Vincent Rioux, Stéphanie Daval, Hervé Guillou, Sophie Jan, Philippe Legrand: Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. In: Reproduction Nutrition Development. Band 43, Nr. 5, September 2003, S. 419–430, doi:10.1051/rnd:2003036.
  • Nils Ewald, Aleksandar Vidakovic, Markus Langeland, Anders Kiessling, Sabine Sampels, Cecilia Lalander: Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. In: Waste Management. Band 102, Februar 2020, S. 40–47, doi:10.1016/j.wasman.2019.10.014.
  • Tuti Suryati, Euis Julaeha, Kindi Farabi, Hanies Ambarsari, Ace Tatang Hidayat: Lauric Acid from the Black Soldier Fly (Hermetia illucens) and Its Potential Applications. In: Sustainability. Band 15, Nr. 13, 30. Juni 2023, S. 10383, doi:10.3390/su151310383.
  • Roy P. Hansen, Zofia Czochanska: The fatty acid composition of the lipids of earthworms. In: Journal of the Science of Food and Agriculture. Band 26, Nr. 7, Juli 1975, S. 961–971, doi:10.1002/jsfa.2740260713.
  • Febri Odel Nitbani, Jumina, Dwi Siswanta, Eti Nurwening Solikhah: Isolation and Antibacterial Activity Test of Lauric Acid from Crude Coconut Oil (Cocos nucifera L.). In: Procedia Chemistry. Band 18, 2016, S. 132–140, doi:10.1016/j.proche.2016.01.021.
  • V. Vand, W. M. Morley, T. R. Lomer: The crystal structure of lauric acid. In: Acta Crystallographica. Band 4, Nr. 4, 1. Juli 1951, S. 324–329, doi:10.1107/S0365110X51001069.
  • T. R. Lomer: The crystal and molecular structure of lauric acid (form A). In: Acta Crystallographica. Band 16, Nr. 10, 10. Oktober 1963, S. 984–988, doi:10.1107/S0365110X63002632.
  • Giancarlo Casillas-Vargas, Carlimar Ocasio-Malavé, Solymar Medina, Christian Morales-Guzmán, René García Del Valle, Néstor M. Carballeira, David J. Sanabria-Ríos: Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. In: Progress in Lipid Research. Band 82, April 2021, S. 101093, doi:10.1016/j.plipres.2021.101093, PMID 33577909, PMC 8137538 (freier Volltext).
  • Chifu B. Huang, Yelena Alimova, Taylor M. Myers, Jeffrey L. Ebersole: Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. In: Archives of Oral Biology. Band 56, Nr. 7, Juli 2011, S. 650–654, doi:10.1016/j.archoralbio.2011.01.011, PMID 21333271, PMC 3119748 (freier Volltext).
  • Febri Odel Nitbani, Putra Jiwamurwa Pama Tjitda, Fidelis Nitti, J. Jumina, Annytha Ina Rohi Detha: Antimicrobial Properties of Lauric Acid and Monolaurin in Virgin Coconut Oil: A Review. In: ChemBioEng Reviews. Band 9, Nr. 5, Oktober 2022, S. 442–461, doi:10.1002/cben.202100050.
  • Dl Sheela, A Narayanankutty, Pa Nazeem, Ac Raghavamenon, Sr Muthangaparambil: Lauric acid induce cell death in colon cancer cells mediated by the epidermal growth factor receptor downregulation: An in silico and in vitro study. In: Human & Experimental Toxicology. Band 38, Nr. 7, Juli 2019, S. 753–761, doi:10.1177/0960327119839185.
  • George A. Burdock, Ioana G. Carabin: Safety assessment of myristic acid as a food ingredient. In: Food and Chemical Toxicology. Band 45, Nr. 4, April 2007, S. 517–529, doi:10.1016/j.fct.2006.10.009.
  • Fabian M. Dayrit: The Properties of Lauric Acid and Their Significance in Coconut Oil. In: Journal of the American Oil Chemists' Society. Band 92, Nr. 1, Januar 2015, S. 1–15, doi:10.1007/s11746-014-2562-7.
  • Andy Zöllner, Calin-Aurel Dragan, Dominik Pistorius, Rolf Müller, Helge B. Bode, Frank T. Peters, Hans H. Maurer, Matthias Bureik: Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. In: bchm. Band 390, Nr. 4, 1. April 2009, S. 313–317, doi:10.1515/BC.2009.030.
  • Frank P. Greenspan, Ralph J. Gall, Donald G. MacKELLAR: PREPARATION AND PROPERTIES OF PERLAURIC ACID. In: The Journal of Organic Chemistry. Band 20, Nr. 2, Februar 1955, S. 215–217, doi:10.1021/jo01120a010.
  • Mark F McCarty, James J DiNicolantonio: Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. In: Open Heart. Band 3, Nr. 2, Juli 2016, S. e000467, doi:10.1136/openhrt-2016-000467, PMID 27547436, PMC 4975867 (freier Volltext).
  • Iriany, L Sukeksi, V Diana, Taslim: Preparation and Characterization of Coconut Oil Based Soap with Kaolin as Filler. In: Journal of Physics: Conference Series. Band 1542, Nr. 1, 1. Mai 2020, S. 012046, doi:10.1088/1742-6596/1542/1/012046.
  • David Arkcoll: Laurie oil resources. In: Economic Botany. Band 42, Nr. 2, April 1988, S. 195–205, doi:10.1007/BF02858920.
  • Febri Odel Nitbani, Jumina Jumina, Dwi Siswanta, Eti Nurwening Sholikhah, Dhina Fitriastuti: Synthesis and Antibacterial Activity 1-Monolaurin. In: Oriental Journal of Chemistry. Band 34, Nr. 2, 28. April 2018, S. 863–867, doi:10.13005/ojc/340233.
  • W B Setianto, T Y Wibowo, H Yohanes, F Illaningtyas, D D Anggoro: Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive. In: IOP Conference Series: Earth and Environmental Science. Band 65, Mai 2017, S. 012046, doi:10.1088/1755-1315/65/1/012046.
  • Ibrahim, M Riski, Rodiansono: The effect of solvent in the hydrogenation of lauric acid to lauryl alcohol using Ru-Fe/TiO 2 catalyst. In: IOP Conference Series: Materials Science and Engineering. Band 980, Nr. 1, 1. Dezember 2020, S. 012012, doi:10.1088/1757-899X/980/1/012012.
  • Lv Shilei, Zhu Neng, Feng Guohui: Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. In: Energy and Buildings. Band 38, Nr. 6, Juni 2006, S. 708–711, doi:10.1016/j.enbuild.2005.10.006.

europa.eu

ec.europa.eu

nih.gov

ncbi.nlm.nih.gov

  • Antonio Franco, Rosanna Salvia, Carmen Scieuzo, Eric Schmitt, Antonella Russo, Patrizia Falabella: Lipids from Insects in Cosmetics and for Personal Care Products. In: Insects. Band 13, Nr. 1, 30. Dezember 2021, S. 41, doi:10.3390/insects13010041, PMID 35055884, PMC 8779901 (freier Volltext).
  • Carol L. Fischer, David R. Drake, Deborah V. Dawson, Derek R. Blanchette, Kim A. Brogden, Philip W. Wertz: Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria. In: Antimicrobial Agents and Chemotherapy. Band 56, Nr. 3, März 2012, S. 1157–1161, doi:10.1128/AAC.05151-11, PMID 22155833, PMC 3294957 (freier Volltext).
  • K. J. Kingsbury, S. Paul, A. Crossley, D. M. Morgan: The fatty acid composition of human depot fat. In: Biochemical Journal. Band 78, Nr. 3, 1. März 1961, S. 541–550, doi:10.1042/bj0780541, PMID 13756126, PMC 1205373 (freier Volltext).
  • Giancarlo Casillas-Vargas, Carlimar Ocasio-Malavé, Solymar Medina, Christian Morales-Guzmán, René García Del Valle, Néstor M. Carballeira, David J. Sanabria-Ríos: Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. In: Progress in Lipid Research. Band 82, April 2021, S. 101093, doi:10.1016/j.plipres.2021.101093, PMID 33577909, PMC 8137538 (freier Volltext).
  • Chifu B. Huang, Yelena Alimova, Taylor M. Myers, Jeffrey L. Ebersole: Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. In: Archives of Oral Biology. Band 56, Nr. 7, Juli 2011, S. 650–654, doi:10.1016/j.archoralbio.2011.01.011, PMID 21333271, PMC 3119748 (freier Volltext).
  • Mark F McCarty, James J DiNicolantonio: Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. In: Open Heart. Band 3, Nr. 2, Juli 2016, S. e000467, doi:10.1136/openhrt-2016-000467, PMID 27547436, PMC 4975867 (freier Volltext).

plantfadb.org