K. Marjamaa et al.: The role of xylem class III peroxidases in lignification. In: J Exp Bot, 2009, 60(2), S. 367–376; PMID 19264758; doi:10.1093/jxb/ern278.
LB. Davin et al.: Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. In: Science, 1997, 275(5298), S. 362–366; PMID 8994027; doi:10.1126/science.275.5298.362.
Ronald J. Dinus: Genetic improvement of poplar feedstock quality for ethanol production. Applied Biochemistry and Biotechnology, 2001, S. 23–34; doi:10.1385/ABAB:91-93:1-9:23.
E.L. Tilstona, C. Halpin, D.W. Hopkin: Genetic modifications to lignin biosynthesis in field-grown poplar trees have inconsistent effects on the rate of woody trunk decomposition. Soil Biology and Biochemistry 36(11), November 2004, S. 1903–1906; doi:10.1016/j.soilbio.2004.05.010.
Muelbaier H, Arthen F, Collins G, Hickler T, Hohberg K, Lehmitz R, Pauchet Y, Pfenninger M, Potapov A, Romahn J, Schaefer I, Scheu S, Schneider C, Ebersberger I, Bálint M. 2024. Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates. Molecular Ecology 33:20:e17351. doi:https://doi.org/10.1111/mec.17351
D. Singh, S. Chen: The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. In: Appl Microbiol Biotechnol, 2008, 81(3), S. 399–417; PMID 18810426; doi:10.1007/s00253-008-1706-9.
KE. Hammel, D. Cullen: Role of fungal peroxidases in biological ligninolysis. In: Curr Opin Plant Biol, 2008, 11(3), S. 349–355; PMID 18359268; doi:10.1016/j.pbi.2008.02.003.
David N.-S. Hon, Nobuo Shiraishi: Wood and cellulosic chemistry (eingeschränkte Vorschau in der Google-Buchsuche).
handle.net
hdl.handle.net
AT. Martínez et al.: Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. In: Int Microbiol, 2005, 8(3), S. 195–204 (englisch); PMID 16200498; hdl:10261/1996 (PDF).
klimareporter.de
Joachim Wille: Der neue Super-Dämmstoff. In: klimareporter.de. 7. April 2023, abgerufen am 4. Mai 2023.
nih.gov
ncbi.nlm.nih.gov
K. Marjamaa et al.: The role of xylem class III peroxidases in lignification. In: J Exp Bot, 2009, 60(2), S. 367–376; PMID 19264758; doi:10.1093/jxb/ern278.
LB. Davin et al.: Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. In: Science, 1997, 275(5298), S. 362–366; PMID 8994027; doi:10.1126/science.275.5298.362.
G. Pilate, E. Guiney, K. Holt, M. Petit-Conil, C. Lapierre, J.C. Leplé, B. Pollet, I. Mila, E.A. Webster, H.G. Marstorp, D.W. Hopkins, L. Jouanin, W. Boerjan, W. Schuch, D. Cornu, C. Halpin: Field and pulping performances of transgenic trees with altered lignification.Nature Biotechnology, 20. Juni 2002, S. 607–612. PMID 12042866.
D. Singh, S. Chen: The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. In: Appl Microbiol Biotechnol, 2008, 81(3), S. 399–417; PMID 18810426; doi:10.1007/s00253-008-1706-9.
KE. Hammel, D. Cullen: Role of fungal peroxidases in biological ligninolysis. In: Curr Opin Plant Biol, 2008, 11(3), S. 349–355; PMID 18359268; doi:10.1016/j.pbi.2008.02.003.
AT. Martínez et al.: Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. In: Int Microbiol, 2005, 8(3), S. 195–204 (englisch); PMID 16200498; hdl:10261/1996 (PDF).
J. J. Bozell, J. E. Holladay, D. Johnson, J. F. White: Top Value Added Chemicals From Biomass. Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Oktober 2007; pnl.gov (PDF; 802 kB).