H. A. Barker: Bacterial fermentations. John Wiley and Sons, New York 1956, S.1–95 (archive.org).
copernicus.org
bg.copernicus.org
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, Frank Keppler: Evidence for methane production by the marine algae <i>Emiliania huxleyi</i>. In: Biogeosciences. Band13, Nr.10, 1. Juni 2016, ISSN1726-4189, S.3163–3174, doi:10.5194/bg-13-3163-2016 (copernicus.org [abgerufen am 23. September 2023]).
doi.org
Die Ordnung Methanomassiliicoccales wurde von Iino et al. (2013, doi:10.1264/jsme2.ME12189) aufgestellt und innerhalb der Klasse Thermoplasmata verortet. Die Ordnung wurde mit der Typusgattung Methanomassiliicoccus bestätigt (IUMS 2013, doi:10.1099/ijs.0.058222-0).
Die Beschreibung der Gattung mit ihrer Typusart Methanomassiliicoccus luminyensis erfolgte 2012 durch Dridi et al. (doi:10.1099/ijs.0.033712-0) und beide wurden bestätigt (IUMS 2012, doi:10.1099/ijs.0.048033-0).
Franziska Enzmann, Florian Mayer, Michael Rother, Dirk Holtmann: Methanogens: biochemical background and biotechnological applications. In: AMB Express. Band8, Nr.1, Dezember 2018, ISSN2191-0855, S.1, doi:10.1186/s13568-017-0531-x, PMID 29302756, PMC 5754280 (freier Volltext).
V. Shcherbakova, E. Rivkina, S. Pecheritsyna, K. Laurinavichius, N. Suzina: Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. In: International Journal of Systematic and Evolutionary Microbiology. Band61, Nr.1, 1. Januar 2011, ISSN1466-5026, S.144–147, doi:10.1099/ijs.0.021311-0.
M. P. Bryant, D. R. Boone: Isolation and Characterization of Methanobacterium formicicum MF. In: International Journal of Systematic Bacteriology. Band37, Nr.2, 1. April 1987, ISSN0020-7713, S.171–171, doi:10.1099/00207713-37-2-171.
M. P. Bryant, D. R. Boone: Emended Description of Strain MST(DSM 800T), the Type Strain of Methanosarcina barkeri. In: International Journal of Systematic Bacteriology. Band37, Nr.2, 1. April 1987, ISSN0020-7713, S.169–170, doi:10.1099/00207713-37-2-169.
Margit Kurr, Robert Huber, Helmut König, Holger W. Jannasch, Hans Fricke: Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. In: Archives of Microbiology. Band156, Nr.4, September 1991, ISSN0302-8933, S.239–247, doi:10.1007/BF00262992.
Sarah E. Hook, André-Denis G. Wright, Brian W. McBride: Methanogens: Methane Producers of the Rumen and Mitigation Strategies. In: Archaea. Band2010, 2010, ISSN1472-3646, S.1–11, doi:10.1155/2010/945785, PMID 21253540, PMC 3021854 (freier Volltext) – (hindawi.com [abgerufen am 23. Mai 2019]).
S. Worakit, D. R. Boone, R. A. Mah, M.-E. Abdel-Samie, M. M. El-Halwagi: Methanobacterium alcaliphilum sp. nov., an H2-Utilizing Methanogen That Grows at High pH Values. In: International Journal of Systematic Bacteriology. Band36, Nr.3, 1. Juli 1986, ISSN0020-7713, S.380–382, doi:10.1099/00207713-36-3-380.
C. R. Woese, G. E. Fox: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. In: Proceedings of the National Academy of Sciences of the United States of America. Band74, Nr.11, November 1977, ISSN0027-8424, S.5088–5090, doi:10.1073/pnas.74.11.5088, PMID 270744, PMC 432104 (freier Volltext).
George M. Garrity, John G. Holt, William B. Whitman, Jyoti Keswani, David R. Boone, Yosuke Koga et al.: Phylum AII. Euryarchaeota phy. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, ISBN 978-0-387-98771-2, S.211, doi:10.1007/978-0-387-21609-6_17.
Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology. Validation list no. 85. In: IUMS [zuständiges Gremium] (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band52, Pt 3, Mai 2002, ISSN1466-5026, S.685–690, doi:10.1099/00207713-52-3-685, PMID 12054225.
Takao Iino, Hideyuki Tamaki, Satoshi Tamazawa, Yoshiyuki Ueno, Moriya Ohkuma: Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata. In: Microbes and Environments. Band28, Nr.2, 2013, ISSN1342-6311, S.244–250, doi:10.1264/jsme2.ME12189, PMID 23524372, PMC 4070666 (freier Volltext).
IUMS, Validation List
no. 154 (A. Oren, G. M. Garrity): List of new names and new combinations previously effectively, but not validly, published. In: International Journal of Systematic and Evolutionary Microbiology. Band63, Pt 11, 1. November 2013, ISSN1466-5026, S.3931–3934, doi:10.1099/ijs.0.058222-0.
Céline Petitjean, Philippe Deschamps, Purificación López-García, David Moreira, Céline Brochier-Armanet: Extending the Conserved Phylogenetic Core of Archaea Disentangles the Evolution of the Third Domain of Life. In: Molecular Biology and Evolution. Band32, Nr.5, Mai 2015, ISSN1537-1719, S.1242–1254, doi:10.1093/molbev/msv015.
Jun Meng, Jun Xu, Dan Qin, Ying He, Xiang Xiao: Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. In: The ISME Journal. Band8, Nr.3, März 2014, ISSN1751-7362, S.650–659, doi:10.1038/ismej.2013.174, PMID 24108328, PMC 3930316 (freier Volltext) – (englisch).
Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band1, Nr.12, Dezember 2016, ISSN2058-5276, doi:10.1038/nmicrobiol.2016.170 (englisch).
Viola Krukenberg, Anthony J. Kohtz, Zackary J. Jay, Roland Hatzenpichler: Methyl-reducing methanogenesis by a thermophilic culture of Korarchaeia. In: Nature, 24. Juli 2024; doi:10.1038/s41586-024-07829-8 (englisch).
Anthony J. Kohtz, Nikolai Petrosian, Viola Krukenberg, Zackary J. Jay, Martin Pilhofer, Roland Hatzenpichler: Cultivation and visualization of a methanogen of the phylum Thermoproteota. In: Natire, 24. Jul 2024; doi:10.1038/s41586-024-07631-6 (englisch).
Guillaume Borrel, Panagiotis S. Adam, Simonetta Gribaldo: Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. In: Genome Biology and Evolution. Band8, Nr.6, Juni 2016, ISSN1759-6653, S.1706–1711, doi:10.1093/gbe/evw114, PMID 27189979, PMC 4943185 (freier Volltext).
Bojk A. Berghuis, Feiqiao Brian Yu, Frederik Schulz, Paul C. Blainey, Tanja Woyke: Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. In: Proceedings of the National Academy of Sciences. Band116, Nr.11, 12. März 2019, ISSN0027-8424, S.5037–5044, doi:10.1073/pnas.1815631116, PMID 30814220, PMC 6421429 (freier Volltext).
Joanna M. Wolfe, Gregory P. Fournier: Horizontal gene transfer constrains the timing of methanogen evolution. In: Nature Ecology & Evolution. Band2, Nr.5, Mai 2018, ISSN2397-334X, S.897–903, doi:10.1038/s41559-018-0513-7.
Guillaume Borrel, Panagiotis S. Adam, Luke J. McKay, Lin-Xing Chen, Jillian F. Banfield, Simonetta Gribaldo, et al.: Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. In: Nature Microbiology. Band4, Nr.4, April 2019, ISSN2058-5276, S.603–613, doi:10.1038/s41564-019-0363-3, PMID 30833729, PMC 6453112 (freier Volltext) – (Epub 4. März 2019).
Zhuo Zhou, Cui-jing Zhang, Peng-fei Liu, Lin Fu, Rafael Laso-Pérez, Lu Yang, Li-ping Bai, Jiang Li, Min Yang, Jun-zhang Lin, Wei-dong Wang, Gunter Wegener, Meng Li, Lei Cheng: Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. In: Nature. Band601, Nr.7892, 2022, S.257–262, doi:10.1038/s41586-021-04235-2 (Epub 22. Dezember 2021). Dazu: Vom Ölfeld ins Labor: Wie eine besondere Mikrobe Erdöl in Gase zerlegt, auf marum.de (Zentrum für Marine Umweltwissenschaften der Universität Bremen) vom 22. Dezember 2021.
P. H. A. Sneath, Vicki McGowan, V. B. D. Skerman (editing authors) on behalf of The Ad Hoc Committee of the Judicial Commission of the ICSB: Approved Lists of Bacterial Names. In: International Journal of Systematic and Evolutionary Microbiology. Band30, Nr.1, 1. Januar 1980, S.225, doi:10.1099/00207713-30-1-225.
Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 6. In: IUMS [zuständige Instanz] (Hrsg.): International Journal of Systematic Bacteriology. Band31, Nr.2, 1. April 1981, ISSN0020-7713, S.215–218, doi:10.1099/00207713-31-2-215.
C. R. Woese, O. Kandler, M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. In: Proceedings of the National Academy of Sciences of the United States of America. Band87, Nr.12, Juni 1990, ISSN0027-8424, S.4576–4579, doi:10.1073/pnas.87.12.4576, PMID 2112744, PMC 54159 (freier Volltext).
David R. Boone: Class I. Methanobacteria class. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. 2. Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, S.213, doi:10.1007/978-0-387-21609-6.
David R. Boone: Class II. Methanococci class. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, S.235, doi:10.1007/978-0-387-21609-6.
Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Springer Verlag, New York 2001, ISBN 978-0-387-98771-2, doi:10.1007/978-0-387-21609-6.
J. P. Euzéby, B. J. Tindall: Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. In: International Journal of Systematic and Evolutionary Microbiology. Band51, Pt 2, März 2001, ISSN1466-5026, S.725–727, doi:10.1099/00207713-51-2-725, PMID 11321122.
The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. In: Judicial Commission of the International Committee on Systematics of Prokaryotes (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band55, Pt 1, Januar 2005, ISSN1466-5026, S.517–518, doi:10.1099/ijs.0.63548-0, PMID 15653928.
Kejia Wu, Lei Zhou, Guillaume Tahon, Laiyan Liu, Jiang Li, Jianchao Zhang, Fengfeng Zheng, Chengpeng Deng, Wenhao Han, Liping Bai, Lin Fu, Xiuzhu Dong, Chuanlun Zhang, Thijs J. G. Ettema, Diana Z. Sousa, Lei Cheng: Isolation of a methyl-reducing methanogen outside the Euryarchaeota. In: Nature, 24. Juli 2024; doi:10.1038/s41586-024-07728-y (englisch).
M. Bižić, T. Klintzsch, D. Ionescu, M. Y. Hindiyeh, M. Günthel, A. M. Muro-Pastor, W. Eckert, T. Urich, F. Keppler, H.-P. Grossart: Aquatic and terrestrial cyanobacteria produce methane. In: Science Advances. Band6, Nr.3, Januar 2020, ISSN2375-2548, S.eaax5343, doi:10.1126/sciadv.aax5343, PMID 31998836, PMC 6962044 (freier Volltext) – (englisch).
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, Frank Keppler: Evidence for methane production by the marine algae <i>Emiliania huxleyi</i>. In: Biogeosciences. Band13, Nr.10, 1. Juni 2016, ISSN1726-4189, S.3163–3174, doi:10.5194/bg-13-3163-2016 (copernicus.org [abgerufen am 23. September 2023]).
Frank Keppler, John T. G. Hamilton, Marc Brass, Thomas Röckmann: Methane emissions from terrestrial plants under aerobic conditions. In: Nature. Band439, Nr.7073, 12. Januar 2006, ISSN1476-4687, S.187–191, doi:10.1038/nature04420, PMID 16407949.
Eszter Tuboly, Andrea Szabó, Dénes Garab, Gábor Bartha, Ágnes Janovszky, Gábor Erős, Anna Szabó, Árpád Mohácsi, Gábor Szabó, József Kaszaki, Miklós Ghyczy, Mihály Boros: Methane biogenesis during sodium azide-induced chemical hypoxia in rats. In: American Journal of Physiology. Cell Physiology. Band304, Nr.2, 15. Januar 2013, ISSN1522-1563, S.C207–214, doi:10.1152/ajpcell.00300.2012, PMID 23174561.
Katharina Lenhart, Michael Bunge, Stefan Ratering, Thomas R. Neu, Ina Schüttmann, Markus Greule, Claudia Kammann, Sylvia Schnell, Christoph Müller, Holger Zorn, Frank Keppler: Evidence for methane production by saprotrophic fungi. In: Nature Communications. Band3, 2012, ISSN2041-1723, S.1046, doi:10.1038/ncomms2049, PMID 22948828.
Frank Keppler, Amanda Schiller, Robert Ehehalt, Markus Greule, Jan Hartmann, Daniela Polag: Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. In: Journal of Breath Research. Band10, Nr.1, 29. Januar 2016, ISSN1752-7163, S.016003, doi:10.1088/1752-7155/10/1/016003, PMID 26824393.
Mengyin Yao, Cynthia Henny, Julia A. Maresca: Freshwater bacteria release methane as a byproduct of phosphorus acquisition. In: Applied and Environmental Microbiology. Band82, Nr.23, Dezember 2016, ISSN1098-5336, S.6994–7003, doi:10.1128/AEM.02399-16, PMID 27694233, PMC 5103098 (freier Volltext).
Qian Wang, John E. Dore, Timothy R. McDermott: Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. In: Environmental Microbiology. Band19, Nr.6, Juni 2017, ISSN1462-2920, S.2366–2378, doi:10.1111/1462-2920.13747, PMID 28370935.
Daniel J. Repeta, Sara Ferrón, Oscar A. Sosa, Carl G. Johnson, Lucas D. Repeta, Marianne Acker, Edward F. DeLong, David M. Karl: Marine methane paradox explained by bacterial degradation of dissolved organic matter. In: Nature Geoscience. Band9, Nr.12, 14. November 2016, ISSN1752-0894, S.884–887, doi:10.1038/ngeo2837.
WW. Metcalf: Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. In: Science, 2012, 337(6098), S. 1104–1107; PMID 22936780; doi:10.1126/science.1219875.
L. J. Beversdorf, A. E. White, K. M. Björkman, R. M. Letelier, D. M. Karl: Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. In: Limnology and Oceanography. Band55, Nr.4, Juli 2010, ISSN0024-3590, S.1768–1778, doi:10.4319/lo.2010.55.4.1768.
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Andreas Berg, Peter Lindblad, Bo Håkan Svensson: Cyanobacteria as a source of hydrogen for methane formation. In: World Journal of Microbiology & Biotechnology. Band30, Nr.2, Februar 2014, ISSN1573-0972, S.539–545, doi:10.1007/s11274-013-1463-5, PMID 23990068.
Yanning Zheng, Derek F. Harris, Zheng Yu, Yanfen Fu, Saroj Poudel, Rhesa N. Ledbetter, Kathryn R. Fixen, Zhi-Yong Yang, Eric S. Boyd, Mary E. Lidstrom, Lance C. Seefeldt, Caroline S. Harwood: A pathway for biological methane production using bacterial iron-only nitrogenase. In: Nature Microbiology. Band3, Nr.3, März 2018, ISSN2058-5276, S.281–286, doi:10.1038/s41564-017-0091-5, PMID 29335552.
Lu-Yao Liu, Guo-Jun Xie, Jie Ding, Bing-Feng Liu, De-Feng Xing, Nan-Qi Ren, Qilin Wang: Microbial methane emissions from the non-methanogenesis processes: A critical review. In: The Science of the Total Environment. Band806, Pt 4, 1. Februar 2022, ISSN1879-1026, S.151362, doi:10.1016/j.scitotenv.2021.151362, PMID 34740653.
Seigo Shima, Gangfeng Huang, Tristan Wagner, Ulrich Ermler: Structural Basis of Hydrogenotrophic Methanogenesis. In: Annual Review of Microbiology. Band74, 8. September 2020, ISSN1545-3251, S.713–733, doi:10.1146/annurev-micro-011720-122807, PMID 32692612.
Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft, Philip Hugenholtz, Gene W. Tyson: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band1, 3. Oktober 2016, ISSN2058-5276, S.16170, doi:10.1038/nmicrobiol.2016.170, PMID 27694807.
Stefan Dyksma, Lukas Jansen, Claudia Gallert: Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. In: Microbiome. Band8, Nr.1, 3. Juli 2020, ISSN2049-2618, S.105, doi:10.1186/s40168-020-00862-5, PMID 32620171, PMC 7334858 (freier Volltext).
F. Peeters, H. Hofmann: Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes. In: Nature Communications. Band12, Nr.1, 22. Februar 2021, ISSN2041-1723, doi:10.1038/s41467-021-21215-2, PMID 33619253, PMC 7900097 (freier Volltext).
Sarah E. Hook, André-Denis G. Wright, Brian W. McBride: Methanogens: Methane Producers of the Rumen and Mitigation Strategies. In: Archaea. Band2010, 2010, ISSN1472-3646, S.1–11, doi:10.1155/2010/945785, PMID 21253540, PMC 3021854 (freier Volltext) – (hindawi.com [abgerufen am 23. Mai 2019]).
marum.de
Zhuo Zhou, Cui-jing Zhang, Peng-fei Liu, Lin Fu, Rafael Laso-Pérez, Lu Yang, Li-ping Bai, Jiang Li, Min Yang, Jun-zhang Lin, Wei-dong Wang, Gunter Wegener, Meng Li, Lei Cheng: Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. In: Nature. Band601, Nr.7892, 2022, S.257–262, doi:10.1038/s41586-021-04235-2 (Epub 22. Dezember 2021). Dazu: Vom Ölfeld ins Labor: Wie eine besondere Mikrobe Erdöl in Gase zerlegt, auf marum.de (Zentrum für Marine Umweltwissenschaften der Universität Bremen) vom 22. Dezember 2021.
In Bapteste et al. (2005, PMID 15876569) wurde zur Arbeit von Woese & Olsen (1986, PMID 11542063) wiedergegeben, dass bereits 1986 durch Analyse der 16S-rRNA-Gene bekannt war, dass die Methanbildner nicht monophyletisch sind, weil die damalige, methanbildende Ordnung Methanomicrobiales enger mit der extrem-halophilen, nicht methanogenen Ordnung Halobacteriales verwandt war, als mit anderen Methanbildnern.
Typische Bakterien: die Autoren (Woese & Fox, 1977, PMID 270744) sahen die “eubacteria” als typisch an und verwendeten die Vorsilbe „eu“ (“... contains all of the typical bacteria so far characterized, … It is appropriate to call this … eubacteria”).
Altertümliche Bakterien: Der methanogene Phänotyp der “archaebacteria” ließ die Autoren (Woese & Fox, 1977, PMID 270744) an eine erdgeschichtlich altertümliche Epoche denken (“The apparent antiquity of the methanogenic phenotype … to exist on earth 3-4 billion years ago … to name this … archaebacteria”).
Franziska Enzmann, Florian Mayer, Michael Rother, Dirk Holtmann: Methanogens: biochemical background and biotechnological applications. In: AMB Express. Band8, Nr.1, Dezember 2018, ISSN2191-0855, S.1, doi:10.1186/s13568-017-0531-x, PMID 29302756, PMC 5754280 (freier Volltext).
W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe: Methanogens: reevaluation of a unique biological group. In: Microbiological Reviews. Band43, Nr.2, Juni 1979, ISSN0146-0749, S.260–296, PMID 390357, PMC 281474 (freier Volltext).
Sarah E. Hook, André-Denis G. Wright, Brian W. McBride: Methanogens: Methane Producers of the Rumen and Mitigation Strategies. In: Archaea. Band2010, 2010, ISSN1472-3646, S.1–11, doi:10.1155/2010/945785, PMID 21253540, PMC 3021854 (freier Volltext) – (hindawi.com [abgerufen am 23. Mai 2019]).
C. R. Woese, G. E. Fox: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. In: Proceedings of the National Academy of Sciences of the United States of America. Band74, Nr.11, November 1977, ISSN0027-8424, S.5088–5090, doi:10.1073/pnas.74.11.5088, PMID 270744, PMC 432104 (freier Volltext).
C. R. Woese, G. J. Olsen: Archaebacterial phylogeny: perspectives on the urkingdoms. In: Systematic and Applied Microbiology. Band7, 1986, ISSN0723-2020, S.161–177, PMID 11542063.
Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology. Validation list no. 85. In: IUMS [zuständiges Gremium] (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band52, Pt 3, Mai 2002, ISSN1466-5026, S.685–690, doi:10.1099/00207713-52-3-685, PMID 12054225.
Takao Iino, Hideyuki Tamaki, Satoshi Tamazawa, Yoshiyuki Ueno, Moriya Ohkuma: Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata. In: Microbes and Environments. Band28, Nr.2, 2013, ISSN1342-6311, S.244–250, doi:10.1264/jsme2.ME12189, PMID 23524372, PMC 4070666 (freier Volltext).
Eric Bapteste, Céline Brochier, Yan Boucher: Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. In: Archaea (Vancouver, B.C.). Band1, Nr.5, Mai 2005, ISSN1472-3646, S.353–363, PMID 15876569, PMC 2685549 (freier Volltext).
Jun Meng, Jun Xu, Dan Qin, Ying He, Xiang Xiao: Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. In: The ISME Journal. Band8, Nr.3, März 2014, ISSN1751-7362, S.650–659, doi:10.1038/ismej.2013.174, PMID 24108328, PMC 3930316 (freier Volltext) – (englisch).
Guillaume Borrel, Panagiotis S. Adam, Simonetta Gribaldo: Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. In: Genome Biology and Evolution. Band8, Nr.6, Juni 2016, ISSN1759-6653, S.1706–1711, doi:10.1093/gbe/evw114, PMID 27189979, PMC 4943185 (freier Volltext).
Bojk A. Berghuis, Feiqiao Brian Yu, Frederik Schulz, Paul C. Blainey, Tanja Woyke: Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. In: Proceedings of the National Academy of Sciences. Band116, Nr.11, 12. März 2019, ISSN0027-8424, S.5037–5044, doi:10.1073/pnas.1815631116, PMID 30814220, PMC 6421429 (freier Volltext).
Guillaume Borrel, Panagiotis S. Adam, Luke J. McKay, Lin-Xing Chen, Jillian F. Banfield, Simonetta Gribaldo, et al.: Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. In: Nature Microbiology. Band4, Nr.4, April 2019, ISSN2058-5276, S.603–613, doi:10.1038/s41564-019-0363-3, PMID 30833729, PMC 6453112 (freier Volltext) – (Epub 4. März 2019).
C. R. Woese, O. Kandler, M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. In: Proceedings of the National Academy of Sciences of the United States of America. Band87, Nr.12, Juni 1990, ISSN0027-8424, S.4576–4579, doi:10.1073/pnas.87.12.4576, PMID 2112744, PMC 54159 (freier Volltext).
IUMS [zuständiges Gremium]: International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision. ASM Press, Washington (DC) 1992, ISBN 978-1-55581-039-9, PMID 21089234 (englisch, nih.gov).
J. P. Euzéby, B. J. Tindall: Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. In: International Journal of Systematic and Evolutionary Microbiology. Band51, Pt 2, März 2001, ISSN1466-5026, S.725–727, doi:10.1099/00207713-51-2-725, PMID 11321122.
The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. In: Judicial Commission of the International Committee on Systematics of Prokaryotes (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band55, Pt 1, Januar 2005, ISSN1466-5026, S.517–518, doi:10.1099/ijs.0.63548-0, PMID 15653928.
M. Bižić, T. Klintzsch, D. Ionescu, M. Y. Hindiyeh, M. Günthel, A. M. Muro-Pastor, W. Eckert, T. Urich, F. Keppler, H.-P. Grossart: Aquatic and terrestrial cyanobacteria produce methane. In: Science Advances. Band6, Nr.3, Januar 2020, ISSN2375-2548, S.eaax5343, doi:10.1126/sciadv.aax5343, PMID 31998836, PMC 6962044 (freier Volltext) – (englisch).
Frank Keppler, John T. G. Hamilton, Marc Brass, Thomas Röckmann: Methane emissions from terrestrial plants under aerobic conditions. In: Nature. Band439, Nr.7073, 12. Januar 2006, ISSN1476-4687, S.187–191, doi:10.1038/nature04420, PMID 16407949.
Eszter Tuboly, Andrea Szabó, Dénes Garab, Gábor Bartha, Ágnes Janovszky, Gábor Erős, Anna Szabó, Árpád Mohácsi, Gábor Szabó, József Kaszaki, Miklós Ghyczy, Mihály Boros: Methane biogenesis during sodium azide-induced chemical hypoxia in rats. In: American Journal of Physiology. Cell Physiology. Band304, Nr.2, 15. Januar 2013, ISSN1522-1563, S.C207–214, doi:10.1152/ajpcell.00300.2012, PMID 23174561.
Katharina Lenhart, Michael Bunge, Stefan Ratering, Thomas R. Neu, Ina Schüttmann, Markus Greule, Claudia Kammann, Sylvia Schnell, Christoph Müller, Holger Zorn, Frank Keppler: Evidence for methane production by saprotrophic fungi. In: Nature Communications. Band3, 2012, ISSN2041-1723, S.1046, doi:10.1038/ncomms2049, PMID 22948828.
Frank Keppler, Amanda Schiller, Robert Ehehalt, Markus Greule, Jan Hartmann, Daniela Polag: Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. In: Journal of Breath Research. Band10, Nr.1, 29. Januar 2016, ISSN1752-7163, S.016003, doi:10.1088/1752-7155/10/1/016003, PMID 26824393.
Mengyin Yao, Cynthia Henny, Julia A. Maresca: Freshwater bacteria release methane as a byproduct of phosphorus acquisition. In: Applied and Environmental Microbiology. Band82, Nr.23, Dezember 2016, ISSN1098-5336, S.6994–7003, doi:10.1128/AEM.02399-16, PMID 27694233, PMC 5103098 (freier Volltext).
Qian Wang, John E. Dore, Timothy R. McDermott: Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. In: Environmental Microbiology. Band19, Nr.6, Juni 2017, ISSN1462-2920, S.2366–2378, doi:10.1111/1462-2920.13747, PMID 28370935.
WW. Metcalf: Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. In: Science, 2012, 337(6098), S. 1104–1107; PMID 22936780; doi:10.1126/science.1219875.
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Andreas Berg, Peter Lindblad, Bo Håkan Svensson: Cyanobacteria as a source of hydrogen for methane formation. In: World Journal of Microbiology & Biotechnology. Band30, Nr.2, Februar 2014, ISSN1573-0972, S.539–545, doi:10.1007/s11274-013-1463-5, PMID 23990068.
Yanning Zheng, Derek F. Harris, Zheng Yu, Yanfen Fu, Saroj Poudel, Rhesa N. Ledbetter, Kathryn R. Fixen, Zhi-Yong Yang, Eric S. Boyd, Mary E. Lidstrom, Lance C. Seefeldt, Caroline S. Harwood: A pathway for biological methane production using bacterial iron-only nitrogenase. In: Nature Microbiology. Band3, Nr.3, März 2018, ISSN2058-5276, S.281–286, doi:10.1038/s41564-017-0091-5, PMID 29335552.
Lu-Yao Liu, Guo-Jun Xie, Jie Ding, Bing-Feng Liu, De-Feng Xing, Nan-Qi Ren, Qilin Wang: Microbial methane emissions from the non-methanogenesis processes: A critical review. In: The Science of the Total Environment. Band806, Pt 4, 1. Februar 2022, ISSN1879-1026, S.151362, doi:10.1016/j.scitotenv.2021.151362, PMID 34740653.
Seigo Shima, Gangfeng Huang, Tristan Wagner, Ulrich Ermler: Structural Basis of Hydrogenotrophic Methanogenesis. In: Annual Review of Microbiology. Band74, 8. September 2020, ISSN1545-3251, S.713–733, doi:10.1146/annurev-micro-011720-122807, PMID 32692612.
Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft, Philip Hugenholtz, Gene W. Tyson: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band1, 3. Oktober 2016, ISSN2058-5276, S.16170, doi:10.1038/nmicrobiol.2016.170, PMID 27694807.
Stefan Dyksma, Lukas Jansen, Claudia Gallert: Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. In: Microbiome. Band8, Nr.1, 3. Juli 2020, ISSN2049-2618, S.105, doi:10.1186/s40168-020-00862-5, PMID 32620171, PMC 7334858 (freier Volltext).
F. Peeters, H. Hofmann: Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes. In: Nature Communications. Band12, Nr.1, 22. Februar 2021, ISSN2041-1723, doi:10.1038/s41467-021-21215-2, PMID 33619253, PMC 7900097 (freier Volltext).
pubmed.ncbi.nlm.nih.gov
Es wurden Suchanfragen mit verschiedenen englischen Ausdrücken auf der Website von PubMed durchgeführt (https://pubmed.ncbi.nlm.nih.gov/, Oktober 2023), um die Verwendung von Wörtern im Hinblick auf „Methanogenese“ zu überprüfen. Verwendet wurden u. a. die Suchausdrücke /aerobic metanogens/ und /oxic methanogens/.
Franziska Enzmann, Florian Mayer, Michael Rother, Dirk Holtmann: Methanogens: biochemical background and biotechnological applications. In: AMB Express. Band8, Nr.1, Dezember 2018, ISSN2191-0855, S.1, doi:10.1186/s13568-017-0531-x, PMID 29302756, PMC 5754280 (freier Volltext).
V. Shcherbakova, E. Rivkina, S. Pecheritsyna, K. Laurinavichius, N. Suzina: Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. In: International Journal of Systematic and Evolutionary Microbiology. Band61, Nr.1, 1. Januar 2011, ISSN1466-5026, S.144–147, doi:10.1099/ijs.0.021311-0.
M. P. Bryant, D. R. Boone: Isolation and Characterization of Methanobacterium formicicum MF. In: International Journal of Systematic Bacteriology. Band37, Nr.2, 1. April 1987, ISSN0020-7713, S.171–171, doi:10.1099/00207713-37-2-171.
W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe: Methanogens: reevaluation of a unique biological group. In: Microbiological Reviews. Band43, Nr.2, Juni 1979, ISSN0146-0749, S.260–296, PMID 390357, PMC 281474 (freier Volltext).
M. P. Bryant, D. R. Boone: Emended Description of Strain MST(DSM 800T), the Type Strain of Methanosarcina barkeri. In: International Journal of Systematic Bacteriology. Band37, Nr.2, 1. April 1987, ISSN0020-7713, S.169–170, doi:10.1099/00207713-37-2-169.
Margit Kurr, Robert Huber, Helmut König, Holger W. Jannasch, Hans Fricke: Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. In: Archives of Microbiology. Band156, Nr.4, September 1991, ISSN0302-8933, S.239–247, doi:10.1007/BF00262992.
Sarah E. Hook, André-Denis G. Wright, Brian W. McBride: Methanogens: Methane Producers of the Rumen and Mitigation Strategies. In: Archaea. Band2010, 2010, ISSN1472-3646, S.1–11, doi:10.1155/2010/945785, PMID 21253540, PMC 3021854 (freier Volltext) – (hindawi.com [abgerufen am 23. Mai 2019]).
S. Worakit, D. R. Boone, R. A. Mah, M.-E. Abdel-Samie, M. M. El-Halwagi: Methanobacterium alcaliphilum sp. nov., an H2-Utilizing Methanogen That Grows at High pH Values. In: International Journal of Systematic Bacteriology. Band36, Nr.3, 1. Juli 1986, ISSN0020-7713, S.380–382, doi:10.1099/00207713-36-3-380.
C. R. Woese, G. E. Fox: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. In: Proceedings of the National Academy of Sciences of the United States of America. Band74, Nr.11, November 1977, ISSN0027-8424, S.5088–5090, doi:10.1073/pnas.74.11.5088, PMID 270744, PMC 432104 (freier Volltext).
C. R. Woese, G. J. Olsen: Archaebacterial phylogeny: perspectives on the urkingdoms. In: Systematic and Applied Microbiology. Band7, 1986, ISSN0723-2020, S.161–177, PMID 11542063.
Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology. Validation list no. 85. In: IUMS [zuständiges Gremium] (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band52, Pt 3, Mai 2002, ISSN1466-5026, S.685–690, doi:10.1099/00207713-52-3-685, PMID 12054225.
Takao Iino, Hideyuki Tamaki, Satoshi Tamazawa, Yoshiyuki Ueno, Moriya Ohkuma: Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata. In: Microbes and Environments. Band28, Nr.2, 2013, ISSN1342-6311, S.244–250, doi:10.1264/jsme2.ME12189, PMID 23524372, PMC 4070666 (freier Volltext).
IUMS, Validation List
no. 154 (A. Oren, G. M. Garrity): List of new names and new combinations previously effectively, but not validly, published. In: International Journal of Systematic and Evolutionary Microbiology. Band63, Pt 11, 1. November 2013, ISSN1466-5026, S.3931–3934, doi:10.1099/ijs.0.058222-0.
Eric Bapteste, Céline Brochier, Yan Boucher: Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. In: Archaea (Vancouver, B.C.). Band1, Nr.5, Mai 2005, ISSN1472-3646, S.353–363, PMID 15876569, PMC 2685549 (freier Volltext).
Céline Petitjean, Philippe Deschamps, Purificación López-García, David Moreira, Céline Brochier-Armanet: Extending the Conserved Phylogenetic Core of Archaea Disentangles the Evolution of the Third Domain of Life. In: Molecular Biology and Evolution. Band32, Nr.5, Mai 2015, ISSN1537-1719, S.1242–1254, doi:10.1093/molbev/msv015.
Jun Meng, Jun Xu, Dan Qin, Ying He, Xiang Xiao: Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. In: The ISME Journal. Band8, Nr.3, März 2014, ISSN1751-7362, S.650–659, doi:10.1038/ismej.2013.174, PMID 24108328, PMC 3930316 (freier Volltext) – (englisch).
Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band1, Nr.12, Dezember 2016, ISSN2058-5276, doi:10.1038/nmicrobiol.2016.170 (englisch).
Guillaume Borrel, Panagiotis S. Adam, Simonetta Gribaldo: Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. In: Genome Biology and Evolution. Band8, Nr.6, Juni 2016, ISSN1759-6653, S.1706–1711, doi:10.1093/gbe/evw114, PMID 27189979, PMC 4943185 (freier Volltext).
Bojk A. Berghuis, Feiqiao Brian Yu, Frederik Schulz, Paul C. Blainey, Tanja Woyke: Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. In: Proceedings of the National Academy of Sciences. Band116, Nr.11, 12. März 2019, ISSN0027-8424, S.5037–5044, doi:10.1073/pnas.1815631116, PMID 30814220, PMC 6421429 (freier Volltext).
Joanna M. Wolfe, Gregory P. Fournier: Horizontal gene transfer constrains the timing of methanogen evolution. In: Nature Ecology & Evolution. Band2, Nr.5, Mai 2018, ISSN2397-334X, S.897–903, doi:10.1038/s41559-018-0513-7.
Guillaume Borrel, Panagiotis S. Adam, Luke J. McKay, Lin-Xing Chen, Jillian F. Banfield, Simonetta Gribaldo, et al.: Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. In: Nature Microbiology. Band4, Nr.4, April 2019, ISSN2058-5276, S.603–613, doi:10.1038/s41564-019-0363-3, PMID 30833729, PMC 6453112 (freier Volltext) – (Epub 4. März 2019).
Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 6. In: IUMS [zuständige Instanz] (Hrsg.): International Journal of Systematic Bacteriology. Band31, Nr.2, 1. April 1981, ISSN0020-7713, S.215–218, doi:10.1099/00207713-31-2-215.
C. R. Woese, O. Kandler, M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. In: Proceedings of the National Academy of Sciences of the United States of America. Band87, Nr.12, Juni 1990, ISSN0027-8424, S.4576–4579, doi:10.1073/pnas.87.12.4576, PMID 2112744, PMC 54159 (freier Volltext).
J. P. Euzéby, B. J. Tindall: Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. In: International Journal of Systematic and Evolutionary Microbiology. Band51, Pt 2, März 2001, ISSN1466-5026, S.725–727, doi:10.1099/00207713-51-2-725, PMID 11321122.
The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. In: Judicial Commission of the International Committee on Systematics of Prokaryotes (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band55, Pt 1, Januar 2005, ISSN1466-5026, S.517–518, doi:10.1099/ijs.0.63548-0, PMID 15653928.
M. Bižić, T. Klintzsch, D. Ionescu, M. Y. Hindiyeh, M. Günthel, A. M. Muro-Pastor, W. Eckert, T. Urich, F. Keppler, H.-P. Grossart: Aquatic and terrestrial cyanobacteria produce methane. In: Science Advances. Band6, Nr.3, Januar 2020, ISSN2375-2548, S.eaax5343, doi:10.1126/sciadv.aax5343, PMID 31998836, PMC 6962044 (freier Volltext) – (englisch).
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, Frank Keppler: Evidence for methane production by the marine algae <i>Emiliania huxleyi</i>. In: Biogeosciences. Band13, Nr.10, 1. Juni 2016, ISSN1726-4189, S.3163–3174, doi:10.5194/bg-13-3163-2016 (copernicus.org [abgerufen am 23. September 2023]).
Frank Keppler, John T. G. Hamilton, Marc Brass, Thomas Röckmann: Methane emissions from terrestrial plants under aerobic conditions. In: Nature. Band439, Nr.7073, 12. Januar 2006, ISSN1476-4687, S.187–191, doi:10.1038/nature04420, PMID 16407949.
Eszter Tuboly, Andrea Szabó, Dénes Garab, Gábor Bartha, Ágnes Janovszky, Gábor Erős, Anna Szabó, Árpád Mohácsi, Gábor Szabó, József Kaszaki, Miklós Ghyczy, Mihály Boros: Methane biogenesis during sodium azide-induced chemical hypoxia in rats. In: American Journal of Physiology. Cell Physiology. Band304, Nr.2, 15. Januar 2013, ISSN1522-1563, S.C207–214, doi:10.1152/ajpcell.00300.2012, PMID 23174561.
Katharina Lenhart, Michael Bunge, Stefan Ratering, Thomas R. Neu, Ina Schüttmann, Markus Greule, Claudia Kammann, Sylvia Schnell, Christoph Müller, Holger Zorn, Frank Keppler: Evidence for methane production by saprotrophic fungi. In: Nature Communications. Band3, 2012, ISSN2041-1723, S.1046, doi:10.1038/ncomms2049, PMID 22948828.
Frank Keppler, Amanda Schiller, Robert Ehehalt, Markus Greule, Jan Hartmann, Daniela Polag: Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. In: Journal of Breath Research. Band10, Nr.1, 29. Januar 2016, ISSN1752-7163, S.016003, doi:10.1088/1752-7155/10/1/016003, PMID 26824393.
Mengyin Yao, Cynthia Henny, Julia A. Maresca: Freshwater bacteria release methane as a byproduct of phosphorus acquisition. In: Applied and Environmental Microbiology. Band82, Nr.23, Dezember 2016, ISSN1098-5336, S.6994–7003, doi:10.1128/AEM.02399-16, PMID 27694233, PMC 5103098 (freier Volltext).
Qian Wang, John E. Dore, Timothy R. McDermott: Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. In: Environmental Microbiology. Band19, Nr.6, Juni 2017, ISSN1462-2920, S.2366–2378, doi:10.1111/1462-2920.13747, PMID 28370935.
Daniel J. Repeta, Sara Ferrón, Oscar A. Sosa, Carl G. Johnson, Lucas D. Repeta, Marianne Acker, Edward F. DeLong, David M. Karl: Marine methane paradox explained by bacterial degradation of dissolved organic matter. In: Nature Geoscience. Band9, Nr.12, 14. November 2016, ISSN1752-0894, S.884–887, doi:10.1038/ngeo2837.
L. J. Beversdorf, A. E. White, K. M. Björkman, R. M. Letelier, D. M. Karl: Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. In: Limnology and Oceanography. Band55, Nr.4, Juli 2010, ISSN0024-3590, S.1768–1778, doi:10.4319/lo.2010.55.4.1768.
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Maria R. Gomez-Garcia, Michelle Davison, Matthew Blain-Hartnung, Arthur R. Grossman, Devaki Bhaya: Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. In: The ISME journal. Band5, Nr.1, Januar 2011, ISSN1751-7370, S.141–149, doi:10.1038/ismej.2010.96, PMID 20631809, PMC 3105666 (freier Volltext).
Andreas Berg, Peter Lindblad, Bo Håkan Svensson: Cyanobacteria as a source of hydrogen for methane formation. In: World Journal of Microbiology & Biotechnology. Band30, Nr.2, Februar 2014, ISSN1573-0972, S.539–545, doi:10.1007/s11274-013-1463-5, PMID 23990068.
Yanning Zheng, Derek F. Harris, Zheng Yu, Yanfen Fu, Saroj Poudel, Rhesa N. Ledbetter, Kathryn R. Fixen, Zhi-Yong Yang, Eric S. Boyd, Mary E. Lidstrom, Lance C. Seefeldt, Caroline S. Harwood: A pathway for biological methane production using bacterial iron-only nitrogenase. In: Nature Microbiology. Band3, Nr.3, März 2018, ISSN2058-5276, S.281–286, doi:10.1038/s41564-017-0091-5, PMID 29335552.
Lu-Yao Liu, Guo-Jun Xie, Jie Ding, Bing-Feng Liu, De-Feng Xing, Nan-Qi Ren, Qilin Wang: Microbial methane emissions from the non-methanogenesis processes: A critical review. In: The Science of the Total Environment. Band806, Pt 4, 1. Februar 2022, ISSN1879-1026, S.151362, doi:10.1016/j.scitotenv.2021.151362, PMID 34740653.
Seigo Shima, Gangfeng Huang, Tristan Wagner, Ulrich Ermler: Structural Basis of Hydrogenotrophic Methanogenesis. In: Annual Review of Microbiology. Band74, 8. September 2020, ISSN1545-3251, S.713–733, doi:10.1146/annurev-micro-011720-122807, PMID 32692612.
Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft, Philip Hugenholtz, Gene W. Tyson: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band1, 3. Oktober 2016, ISSN2058-5276, S.16170, doi:10.1038/nmicrobiol.2016.170, PMID 27694807.
Stefan Dyksma, Lukas Jansen, Claudia Gallert: Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. In: Microbiome. Band8, Nr.1, 3. Juli 2020, ISSN2049-2618, S.105, doi:10.1186/s40168-020-00862-5, PMID 32620171, PMC 7334858 (freier Volltext).
F. Peeters, H. Hofmann: Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes. In: Nature Communications. Band12, Nr.1, 22. Februar 2021, ISSN2041-1723, doi:10.1038/s41467-021-21215-2, PMID 33619253, PMC 7900097 (freier Volltext).