Morton Klein: A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems. In: Management Science. Band14, Nr.3, 1. November 1967, ISSN0025-1909, S.205–220, doi:10.1287/mnsc.14.3.205 (informs.org [abgerufen am 5. September 2021]).
M. Minoux: Solving integer minimum cost flows with separable convex cost objective polynomially. In: Netflow at Pisa (= Mathematical Programming Studies). Springer, Berlin, Heidelberg 1986, ISBN 978-3-642-00923-5, S.237–239, doi:10.1007/bfb0121104.
G. M. Guisewite, P. M. Pardalos: Minimum concave-cost network flow problems: Applications, complexity, and algorithms. In: Annals of Operations Research. Band25, Nr.1, 1. Dezember 1990, ISSN1572-9338, S.75–99, doi:10.1007/BF02283688.
Morton Klein: A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems. In: Management Science. Band14, Nr.3, 1. November 1967, ISSN0025-1909, S.205–220, doi:10.1287/mnsc.14.3.205 (informs.org [abgerufen am 5. September 2021]).
Morton Klein: A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems. In: Management Science. Band14, Nr.3, 1. November 1967, ISSN0025-1909, S.205–220, doi:10.1287/mnsc.14.3.205 (informs.org [abgerufen am 5. September 2021]).
G. M. Guisewite, P. M. Pardalos: Minimum concave-cost network flow problems: Applications, complexity, and algorithms. In: Annals of Operations Research. Band25, Nr.1, 1. Dezember 1990, ISSN1572-9338, S.75–99, doi:10.1007/BF02283688.