T. K. Brotherton, J. W. Lynn: The Synthesis And Chemistry Of Cyanogen. In: Chemical Reviews. Band59, Nr.5, 1. Oktober 1959, S.841–883, doi:10.1021/cr50029a003.
David T. Mowry: The Preparation of Nitriles. In: Chemical Reviews. Band42, Nr.2, 1. April 1948, S.189–283, doi:10.1021/cr60132a001.
Arthur Lapworth: XCVI.—Reactions involving the addition of hydrogen cyanide to carbon compounds. In: J. Chem. Soc., Trans. Band83, Nr.0, 1903, S.995–1005, doi:10.1039/CT9038300995.
Robert J. H. Gregory: Cyanohydrins in Nature and the Laboratory: Biology, Preparations, and Synthetic Applications. In: Chemical Reviews. Band99, Nr.12, 8. Dezember 1999, S.3649–3682, doi:10.1021/cr9902906.
Ji Yang, Peng Wang, Helfried Neumann, Ralf Jackstell, Matthias Beller: Industrially applied and relevant transformations of 1,3-butadiene using homogeneous catalysts. In: Industrial Chemistry & Materials. Band1, Nr.2, 2023, S.155–174, doi:10.1039/D3IM00009E.
David García Cerdá, Antonio Martín Ballester, Alicia Aliena-Valero, Anna Carabén-Redaño, José M. Lloris: Use of cyanoacrylate adhesives in general surgery. In: Surgery Today. Band45, Nr.8, August 2015, S.939–956, doi:10.1007/s00595-014-1056-4.
G. P. Moss, P. A. S. Smith, D. Tavernier: Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). In: Pure and Applied Chemistry. Band67, Nr.8-9, 1. Januar 1995, S.1307–1375, doi:10.1351/pac199567081307.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.c01485.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.t06353.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.s05573.
M. Prabhath, Luke Williams, Shreesha Bhat, Pallavi Sharma: Recent Advances in Cyanamide Chemistry: Synthesis and Applications. In: Molecules. Band22, Nr.4, 12. April 2017, S.615, doi:10.3390/molecules22040615, PMID 28417938, PMC 6154562 (freier Volltext).
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.n04150.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.n04152.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.n04148.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.n04156.
The IUPAC Compendium of Chemical Terminology: The Gold Book. 4. Auflage. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC 2019, doi:10.1351/goldbook.n04153.
Elisheva Goldstein, Buyong Ma, Jenn-Huei Lii, Norman L. Allinger: Molecular mechanics calculations (MM3) on nitriles and alkynes. In: Journal of Physical Organic Chemistry. Band9, Nr.4, April 1996, S.191–202, doi:10.1002/(SICI)1099-1395(199604)9:4<191::AID-POC765>3.0.CO;2-9.
Jean-Marc R Mattalia: The reductive decyanation reaction: an overview and recent developments. In: Beilstein Journal of Organic Chemistry. Band13, 13. Februar 2017, S.267–284, doi:10.3762/bjoc.13.30, PMID 28326136, PMC 5331330 (freier Volltext).
K. Bowden, R. Stewart: Strongly basic systems—V. In: Tetrahedron. Band21, Nr.3, Januar 1965, S.261–266, doi:10.1016/S0040-4020(01)98266-3.
Theresa Soltner, Jonas Häusler, Andreas J. Kornath: The Existence of Tricyanomethane. In: Angewandte Chemie International Edition. Band54, Nr.46, 9. November 2015, S.13775–13776, doi:10.1002/anie.201506753.
Yeon-Ran Shin, Sun-Min Jung, In-Yup Jeon, Jong-Beom Baek: The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. In: Carbon. Band52, Februar 2013, S.493–498, doi:10.1016/j.carbon.2012.10.001.
O. W. Webster: Polycyanation. The Reaction of Cyanogen Chloride, Cyclopentadiene, and Sodium Hydride. In: Journal of the American Chemical Society. Band88, Nr.13, Juli 1966, S.3046–3050, doi:10.1021/ja00965a028.
Robert E. Kitson, Norman E. Griffith: Infrared Absorption Band Due to Nitrile Stretching Vibration. In: Analytical Chemistry. Band24, Nr.2, 18. Februar 1952, S.334–337, doi:10.1021/ac60062a019.
Lewis Nelson: Acute Cyanide Toxicity: Mechanisms and Manifestations. In: Journal of Emergency Nursing. Band32, Nr.4, August 2006, S.S8–S11, doi:10.1016/j.jen.2006.05.012.
Ahmed E. Ahmed, Mohammed Y.H. Farooqui: Comparative toxicities of aliphatic nitriles. In: Toxicology Letters. Band12, Nr.2-3, Juli 1982, S.157–163, doi:10.1016/0378-4274(82)90179-5.
Fraser F. Fleming, Fraser F. Fleming: Nitrile-containing natural products. In: Natural Product Reports. Band16, Nr.5, 1999, S.597–606, doi:10.1039/a804370a.
Camille Scotti, James W. Barlow: Natural Products Containing the Nitrile Functional Group and Their Biological Activities. In: Natural Product Communications. Band17, Nr.5, Mai 2022, S.1934578X2210999, doi:10.1177/1934578X221099973.
Anete C Ferraz, Miriam Elizabeth M Angelucci, Mariana L Da Costa, Ilza R Batista, Bras H De Oliveira, Claudio Da Cunha: Pharmacological Evaluation of Ricinine, a Central Nervous System Stimulant Isolated from Ricinus communis. In: Pharmacology Biochemistry and Behavior. Band63, Nr.3, Juli 1999, S.367–375, doi:10.1016/S0091-3057(99)00007-6.
R. Mukherjee, A. Chatterjee: Structure and synthesis of nudiflorine. In: Tetrahedron. Band22, Nr.4, Januar 1966, S.1461–1466, doi:10.1016/S0040-4020(01)99443-8.
M.Soledade C Pedras, Corwin M Nycholat, Sabine Montaut, Yiming Xu, Abdul Q Khan: Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. In: Phytochemistry. Band59, Nr.6, März 2002, S.611–625, doi:10.1016/S0031-9422(02)00026-2.
A. Bellirou, A. Bouali, B. Bouammali, N. Boukhatem, B.N. Elmtili, A. Hamal, M. El-Mourabit: Extraction of simmondsin and oil in one step from jojoba seeds. In: Industrial Crops and Products. Band21, Nr.2, März 2005, S.229–233, doi:10.1016/j.indcrop.2004.04.007.
Adolf Nahrstedt, Victor Wray: Structural revision of a putative cyanogenic glucoside from Ilex aquifolium. In: Phytochemistry. Band29, Nr.12, 1990, S.3934–3936, doi:10.1016/0031-9422(90)85364-L.
Wendy K. Swenson, John E. Dunn, Eric E. Conn: Cyanogenesis in Acacia sutherlandii. In: Phytochemistry. Band26, Nr.6, Januar 1987, S.1835–1836, doi:10.1016/S0031-9422(00)82299-2.
Martin G. Ettlinger, Jerzy W. Jaroszewski, Søren Rosendal Jensen, Bent Juhl Nielsen, Frederick Nartey: Proacacipetalin and acacipetalin. In: Journal of the Chemical Society, Chemical Communications. Nr.24, 1977, S.952, doi:10.1039/c39770000952.
K Shanker, M Gupta, S Srivastava, D Bawankule, A Pal, S Khanuja: Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. In: Food Chemistry. Band105, Nr.1, 2007, S.376–382, doi:10.1016/j.foodchem.2006.12.034.
F. W. Stamler: Reproduction in Rats Fed Lathyrus Peas or Aminonitriles. In: Experimental Biology and Medicine. Band90, Nr.1, 1. Oktober 1955, S.294–298, doi:10.3181/00379727-90-22013.
E. D. Schilling, F. M. Strong: ISOLATION, STRUCTURE AND SYNTHESIS OF A LATHYRUS FACTOR FROM L. ODORATUS 1. In: Journal of the American Chemical Society. Band76, Nr.10, Mai 1954, S.2848–2848, doi:10.1021/ja01639a084.
Mohammadali Torbati, Hossein Nazemiyeh, Farzaneh Lotfipour, Solmaz Asnaashari, Mahboob Nemati, Fatemeh Fathiazad: Composition and Antibacterial Activity of Heracleum Transcaucasicum and Heracleum Anisactis Aerial Parts Essential Oil. In: Advanced Pharmaceutical Bulletin. 2013, doi:10.5681/APB.2013.066, PMID 24312869, PMC 3848220 (freier Volltext).
Peter Lorenz, Sarina Duckstein, Jürgen Conrad, Matthias Knödler, Ulrich Meyer, Florian C. Stintzing: An Approach to the Chemotaxonomic Differentiation of Two European Dog's Mercury Species: Mercurialis annua L. and M. perennis L. In: Chemistry & Biodiversity. Band9, Nr.2, Februar 2012, S.282–297, doi:10.1002/cbdv.201100341.
K.L. Mikolajczak: Cyanolipids. In: Progress in the Chemistry of Fats and other Lipids. Band15, Nr.2, Januar 1977, S.97–130, doi:10.1016/0079-6832(77)90013-1.
David S. Seigler, Wanda Kawahara: New reports of cyanolipids from sapindaceous plants. In: Biochemical Systematics and Ecology. Band4, Nr.4, Januar 1976, S.263–265, doi:10.1016/0305-1978(76)90050-8.
Pablo Díaz-Rueda, Laura Morales de los Ríos, Luis C Romero, Irene García: Old poisons, new signaling molecules: the case of hydrogen cyanide. In: Journal of Experimental Botany. Band74, Nr.19, 13. Oktober 2023, S.6040–6051, doi:10.1093/jxb/erad317, PMID 37586035, PMC 10575699 (freier Volltext).
Hieng-Ming Ting, Boon Huat Cheah, Yu-Cheng Chen, Pei-Min Yeh, Chiu-Ping Cheng, Freddy Kuok San Yeo, Ane Kjersti Vie, Jens Rohloff, Per Winge, Atle M. Bones, Ralph Kissen: The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. In: Frontiers in Plant Science. Band11, 10. März 2020, doi:10.3389/fpls.2020.00257, PMID 32211010, PMC 7076197 (freier Volltext).
Adam M. Wentzell, Daniel J. Kliebenstein: Genotype, Age, Tissue, and Environment Regulate the Structural Outcome of Glucosinolate Activation. In: Plant Physiology. Band147, Nr.1, 28. April 2008, S.415–428, doi:10.1104/pp.107.115279, PMID 18359845, PMC 2330308 (freier Volltext).
Hideji Tanii: Allyl nitrile: Toxicity and health effects. In: Journal of Occupational Health. Band59, Nr.2, März 2017, S.104–111, doi:10.1539/joh.16-0147-RA, PMID 28132970, PMC 5478528 (freier Volltext).
David J. Williams, Christa Critchley, Sharon Pun, Mridusmita Chaliha, Timothy J. O’Hare: Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. In: Phytochemistry. Band70, Nr.11-12, Juli 2009, S.1401–1409, doi:10.1016/j.phytochem.2009.07.035.
Ani Radonić, Ivica Blažević, Josip Mastelić, Marina Zekić, Mirjana Skočibušić, Ana Maravić: Phytochemical Analysis and Antimicrobial Activity of Cardaria draba (L.) Desv . Volatiles. In: Chemistry & Biodiversity. Band8, Nr.6, Juni 2011, S.1170–1181, doi:10.1002/cbdv.201000370.
Islamiyat F. Bolarinwa, Caroline Orfila, Michael R.A. Morgan: Amygdalin content of seeds, kernels and food products commercially-available in the UK. In: Food Chemistry. Band152, Juni 2014, S.133–139, doi:10.1016/j.foodchem.2013.11.002.
C.J Graham: Nonstructural carbohydrate and prunasin composition of peach seedlings fertilized with different nitrogen sources and aluminum. In: Scientia Horticulturae. Band94, Nr.1-2, Mai 2002, S.21–32, doi:10.1016/S0304-4238(01)00345-4.
C.J Graham: Nonstructural carbohydrate and prunasin composition of peach seedlings fertilized with different nitrogen sources and aluminum. In: Scientia Horticulturae. Band94, Nr.1-2, Mai 2002, S.21–32, doi:10.1016/S0304-4238(01)00345-4.
Jandirk Sendker, Therese Ellendorff, Aljoscha Hölzenbein: Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus. In: Journal of Natural Products. Band79, Nr.7, 22. Juli 2016, S.1724–1729, doi:10.1021/acs.jnatprod.5b01090.
David Chassagne, Jean C. Crouzet, Claude L. Bayonove, Raymond L. Baumes: Identification and Quantification of Passion Fruit Cyanogenic Glycosides. In: Journal of Agricultural and Food Chemistry. Band44, Nr.12, 1. Januar 1996, S.3817–3820, doi:10.1021/jf960381t.
David S. Seigler, Guido F. Pauli, Adolf Nahrstedt, Rosemary Leen: Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. In: Phytochemistry. Band60, Nr.8, August 2002, S.873–882, doi:10.1016/S0031-9422(02)00170-X.
Mateja Senica, Franci Stampar, Robert Veberic, Maja Mikulic‐Petkovsek: The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. In: Journal of the Science of Food and Agriculture. Band97, Nr.8, Juni 2017, S.2623–2632, doi:10.1002/jsfa.8085.
Rex A. Buhrmester, John E. Ebinger, David S. Seigler: Sambunigrin and cyanogenic variability in populations of Sambucus canadensis L. (Caprifoliaceae). In: Biochemical Systematics and Ecology. Band28, Nr.7, August 2000, S.689–695, doi:10.1016/S0305-1978(99)00105-2.
Nhat Hao Tran Le, Karl Egil Malterud, Drissa Diallo, Berit Smestad Paulsen, Cecilie Sogn Nergård, Helle Wangensteen: Bioactive polyphenols in Ximenia americana and the traditional use among Malian healers. In: Journal of Ethnopharmacology. Band139, Nr.3, Februar 2012, S.858–862, doi:10.1016/j.jep.2011.12.031.
H. Kofod, R. Eyjólfsson: Cyanogenesis in species of the fern genera Cystopteris and Davalla. In: Phytochemistry. Band8, Nr.8, August 1969, S.1509–1511, doi:10.1016/S0031-9422(00)85922-1.
Gilles F. Nicollier, Daniel F. Pope, Alonzo C. Thompson: Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halepense). In: Journal of Agricultural and Food Chemistry. Band31, Nr.4, Juli 1983, S.744–748, doi:10.1021/jf00118a016.
Tomas Laursen, Jonas Borch, Camilla Knudsen, Krutika Bavishi, Federico Torta, Helle Juel Martens, Daniele Silvestro, Nikos S. Hatzakis, Markus R. Wenk, Timothy R. Dafforn, Carl Erik Olsen, Mohammed Saddik Motawia, Björn Hamberger, Birger Lindberg Møller, Jean-Etienne Bassard: Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. In: Science. Band354, Nr.6314, 18. November 2016, S.890–893, doi:10.1126/science.aag2347.
G.W. Butler: The distribution of the cyanoglucosides linamarin and lotaustralin in higher plants. In: Phytochemistry. Band4, Nr.1, Februar 1965, S.127–131, doi:10.1016/S0031-9422(00)86154-3.
M. P. Cereda, M.C.Y. Mattos: LINAMARIN: THE TOXIC COMPOUND OF CASSAVA. In: Journal of Venomous Animals and Toxins. Band2, Nr.1, 1996, S.06–12, doi:10.1590/S0104-79301996000100002.
Matthias Onyebuchi Agbo, Daowan Lai, Festus B.C. Okoye, Patience O. Osadebe, Peter Proksch: Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis. In: Fitoterapia. Band86, April 2013, S.78–83, doi:10.1016/j.fitote.2013.02.006.
R. Lieberei, D. Selmar, B. Biehl: Metabolization of cyanogenic glucosides in Hevea brasiliensis. In: Plant Systematics and Evolution. Band150, Nr.1-2, 1985, S.49–63, doi:10.1007/BF00985567.
Mika Zagrobelny, Érika de Castro, Birger Møller, Søren Bak: Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. In: Insects. Band9, Nr.2, 3. Mai 2018, S.51, doi:10.3390/insects9020051, PMID 29751568, PMC 6023451 (freier Volltext).
Ritsuo Nishida, Miriam Rothschild, Rosemary Mummery: Acyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, geometridae: Lepidoptera. In: Phytochemistry. Band36, Nr.1, Mai 1994, S.37–38, doi:10.1016/S0031-9422(00)97007-9.
Nanna Bjarnholt, Mirosław Nakonieczny, Andrzej Kędziorski, Diane M. Debinski, Stephen F. Matter, Carl Erik Olsen, Mika Zagrobelny: Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants. In: Journal of Chemical Ecology. Band38, Nr.5, Mai 2012, S.525–537, doi:10.1007/s10886-012-0114-x.
J. R. Aldrich, S. P. Carroll, W. R. Lusby, M. J. Thompson, J. P. Kochansky, R. M. Waters: Sapindaceae, cyanolipids, and bugs. In: Journal of Chemical Ecology. Band16, Nr.1, Januar 1990, S.199–210, doi:10.1007/BF01021279.
J.C. Braekman, D. Daloze, J.M. Pasteels: Cyanogenic and other glucosides in a neo-guinean bug Leptocoris isolata: Possible precursors in its host-plant. In: Biochemical Systematics and Ecology. Band10, Nr.4, Dezember 1982, S.355–364, doi:10.1016/0305-1978(82)90010-2.
Mika Zagrobelny, Karsten Scheibye-Alsing, Niels Bjerg Jensen, Birger Lindberg Møller, Jan Gorodkin, Søren Bak: 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. In: BMC Genomics. Band10, Nr.1, Dezember 2009, doi:10.1186/1471-2164-10-574, PMID 19954531, PMC 2791780 (freier Volltext).
Ljubodrag V. Vujisić, Ivan M. Vučković, Slobodan E. Makarov, Bojan S. Ilić, Dragan Ž. Antić, Milka B. Jadranin, Nina M. Todorović, Ivan V. Mrkić, Vlatka E. Vajs, Luka R. Lučić, Božidar P. M. Ćurčić, Bojan M. Mitić: Chemistry of the sternal gland secretion of the Mediterranean centipede Himantarium gabrielis (Linnaeus, 1767) (Chilopoda: Geophilomorpha: Himantariidae). In: Naturwissenschaften. Band100, Nr.9, September 2013, S.861–870, doi:10.1007/s00114-013-1086-6.
Karsten Seidelmann, Heike Weinert, Hans-Jörg Ferenz: Wings and legs are production sites for the desert locust courtship-inhibition pheromone, phenylacetonitrile. In: Journal of Insect Physiology. Band49, Nr.12, Dezember 2003, S.1125–1133, doi:10.1016/j.jinsphys.2003.08.005.
S. S. Duffey, M. S. Blum, H. M. Fales, S. L. Evans, R. W. Roncadori, D. L. Tiemann, Y. Nakagawa: Benzoyl cyanide and mandelonitrile benzoate in the defensive secretions of millipedes. In: Journal of Chemical Ecology. Band3, Nr.1, 1977, S.101–113, doi:10.1007/BF00988137.
Adrian Brückner, Günther Raspotnig, Katja Wehner, Reinhard Meusinger, Roy A. Norton, Michael Heethoff: Storage and release of hydrogen cyanide in a chelicerate ( Oribatula tibialis ). In: Proceedings of the National Academy of Sciences. Band114, Nr.13, 28. März 2017, S.3469–3472, doi:10.1073/pnas.1618327114, PMID 28289203, PMC 5380029 (freier Volltext).
Guido Cimino, Margherita Gavagnin, Guido Sodano, Aldo Spinella, Giuseppe Strazzullo, Francis J. Schmitz, Gopichand Yalamanchili: Revised structure of bursatellin. In: The Journal of Organic Chemistry. Band52, Nr.11, Mai 1987, S.2301–2303, doi:10.1021/jo00387a037.
Annika Fagerholm, Damien Habrant, Ari M. Koskinen: Calyculins and Related Marine Natural Products as Serine-Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C. In: Marine Drugs. Band8, Nr.1, 21. Januar 2010, S.122–172, doi:10.3390/md80100122, PMID 20161975, PMC 2817927 (freier Volltext).
Samuele Sala, Jane Fromont, Oliver Gomez, Daniel Vuong, Ernest Lacey, Gavin R. Flematti: Albanitriles A–G: Antiprotozoal Polyacetylene Nitriles from a Mycale Marine Sponge. In: Journal of Natural Products. Band82, Nr.12, 27. Dezember 2019, S.3450–3455, doi:10.1021/acs.jnatprod.9b00840.
Hideyuki Takahashi, Koohei Nozawa, Ken-ichi Kawai: Isolation and Structures of Dicyanide Derivatives, Epurpurins A to C, from Emericella purpurea. In: Chemical and Pharmaceutical Bulletin. Band44, Nr.12, 1996, S.2227–2230, doi:10.1248/cpb.44.2227.
Marjorie Anchel: Metabolic products of Clitocybe diatreta. I. Diatretyne amide and diatretyne nitrile. In: Archives of Biochemistry and Biophysics. Band78, Nr.1, November 1958, S.100–110, doi:10.1016/0003-9861(58)90318-7.
N. G. Heatley, J. S. Stephenson: Identity of ‘Nudic Acid B’ and ‘Diatretyne II’. In: Nature. Band179, Nr.4569, Mai 1957, S.1078–1078, doi:10.1038/1791078a0.
Jan Caspar, Peter Spiteller: A Free Cyanohydrin as Arms and Armour of Marasmius oreades. In: ChemBioChem. Band16, Nr.4, 2. März 2015, S.570–573, doi:10.1002/cbic.201402453.
Anju Sehrawat, Satyavir S. Sindhu, Bernard R. Glick: Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. In: Pedosphere. Band32, Nr.1, Februar 2022, S.15–38, doi:10.1016/S1002-0160(21)60058-9.
Diogo Montes Vidal, Anna‐Lena von Rymon‐Lipinski, Srinivasa Ravella, Ulrike Groenhagen, Jennifer Herrmann, Nestor Zaburannyi, Paulo H. G. Zarbin, Adithi R. Varadarajan, Christian H. Ahrens, Laure Weisskopf, Rolf Müller, Stefan Schulz: Long‐Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria. In: Angewandte Chemie International Edition. Band56, Nr.15, 3. April 2017, S.4342–4346, doi:10.1002/anie.201611940.
Joel P. Cioni, James R. Doroghazi, Kou-San Ju, Xiaomin Yu, Bradley S. Evans, Jaeheon Lee, William W. Metcalf: Cyanohydrin Phosphonate Natural Product from Streptomyces regensis. In: Journal of Natural Products. Band77, Nr.2, 28. Februar 2014, S.243–249, doi:10.1021/np400722m, PMID 24437999, PMC 3993929 (freier Volltext).
Sanjoy Adak, April L. Lukowski, Rebecca J. B. Schäfer, Bradley S. Moore: From Tryptophan to Toxin: Nature’s Convergent Biosynthetic Strategy to Aetokthonotoxin. In: Journal of the American Chemical Society. Band144, Nr.7, 23. Februar 2022, S.2861–2866, doi:10.1021/jacs.1c12778, PMID 35142504, PMC 9004672 (freier Volltext).
Max P. Bernstein, Samantha F. M. Ashbourn, Scott A. Sandford, Louis J. Allamandola: The Lifetimes of Nitriles (CN) and Acids (COOH) during Ultraviolet Photolysis and Their Survival in Space. In: The Astrophysical Journal. Band601, Nr.1, 20. Januar 2004, S.365–370, doi:10.1086/380306.
S Green: Interstellar Chemistry: Exotic Molecules in Space. In: Annual Review of Physical Chemistry. Band32, Nr.1, Oktober 1981, S.103–138, doi:10.1146/annurev.pc.32.100181.000535.
Richard Carter, Mary M. Nijhout: Control of Gamete Formation (Exflagellation) in Malaria Parasites. In: Science. Band195, Nr.4276, 28. Januar 1977, S.407–409, doi:10.1126/science.12566.
Jean-Claude Guillemin, Miloud Bouyahyi, El Hassan Riague: Prebiotic, planetary and interstellar chemistry starting from compounds detected in the interstellar medium. In: Advances in Space Research. Band33, Nr.1, Januar 2004, S.81–87, doi:10.1016/j.asr.2003.07.015.
Nicholas F. Wogan, David C. Catling, Kevin J. Zahnle, Roxana Lupu: Origin-of-life Molecules in the Atmosphere after Big Impacts on the Early Earth. In: The Planetary Science Journal. Band4, Nr.9, 1. September 2023, S.169, doi:10.3847/PSJ/aced83.
Yannick Vallee, Ibrahim Shalayel, Kieu-Dung Ly, K. V. Raghavendra Rao, Gael De Paëpe, Katharina Märker, Anne Milet: At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. In: The International Journal of Developmental Biology. Band61, Nr.8-9, 2017, S.471–478, doi:10.1387/ijdb.170028yv.
James P. Ferris, William J. Hagan: HCN and chemical evolution: The possible role of cyano compounds in prebiotic synthesis. In: Tetrahedron. Band40, Nr.7, Januar 1984, S.1093–1120, doi:10.1016/S0040-4020(01)99315-9.
L. Chimiak, J. Eiler, A. Sessions, C. Blumenfeld, M. Klatte, B.M. Stoltz: Isotope effects at the origin of life: Fingerprints of the Strecker synthesis. In: Geochimica et Cosmochimica Acta. Band321, März 2022, S.78–98, doi:10.1016/j.gca.2022.01.015.
Ibrahim Shalayel, Seydou Coulibaly, Kieu Ly, Anne Milet, Yannick Vallée: The Reaction of Aminonitriles with Aminothiols: A Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean. In: Life. Band8, Nr.4, 19. Oktober 2018, S.47, doi:10.3390/life8040047, PMID 30347745, PMC 6316830 (freier Volltext).
Thomas Laue, Andreas Plagens: Namen- und Schlagwort-Reaktionen der Organischen Chemie. In: Teubner Studienbücher Chemie. 1994, doi:10.1007/978-3-322-94726-0.
K. R. Lynn, Peter E. Yankwich: Cyanide Carbon Isotope Fractionation in the Reaction of Cyanide Ion and Methyl Iodide. Carbon Isotope Effect in the Hydrolysis of Methyl Iodide. In: Journal of the American Chemical Society. Band83, Nr.1, Januar 1961, S.53–57, doi:10.1021/ja01462a010.
G. E. Ham, Jane Stevens: Reaction of 1,2-Dihaloethanes with Sodium Cyanide. In: The Journal of Organic Chemistry. Band27, Nr.12, Dezember 1962, S.4638–4639, doi:10.1021/jo01059a504.
Cinzia Chiappe, Daniela Pieraccini, Paola Saullo: Nucleophilic Displacement Reactions in Ionic Liquids: Substrate and Solvent Effect in the Reaction of NaN 3 and KCN with Alkyl Halides and Tosylates. In: The Journal of Organic Chemistry. Band68, Nr.17, 1. August 2003, S.6710–6715, doi:10.1021/jo026838h.
W. Nagata, M. Yoshioka, S. Hirai: Hydrocyanation. IV. New hydrocyanation methods using hydrogen cyanide and an alkylaluminum, and an alkylaluminum cyanide. In: Journal of the American Chemical Society. Band94, Nr.13, Juni 1972, S.4635–4643, doi:10.1021/ja00768a037.
W. Nagata, M. Yoshioka, T. Okumura: Hydrocyanation. Part X. Cleavage of epoxides with hydrogen cyanide and triethylaluminium and with diethylaluminium cyanide. In: Journal of the Chemical Society C: Organic. Nr.17, 1970, S.2365, doi:10.1039/j39700002365.
Jeffrey C. Mullis, William P. Weber: Regiospecificity of reactions of epoxides and oxetanes with trimethylsilyl cyanide. In: The Journal of Organic Chemistry. Band47, Nr.15, Juli 1982, S.2873–2875, doi:10.1021/jo00136a011.
Hongru Zhang, Xin Su, Kaiwu Dong: Recent progress in transition-metal-catalyzed hydrocyanation of nonpolar alkenes and alkynes. In: Organic & Biomolecular Chemistry. Band18, Nr.3, 2020, S.391–399, doi:10.1039/C9OB02374G.
Muthupandian Ganesan, Paramathevar Nagaraaj: Recent developments in dehydration of primary amides to nitriles. In: Organic Chemistry Frontiers. Band7, Nr.22, 2020, S.3792–3814, doi:10.1039/D0QO00843E.
Dilip Konwar, Monalisa Boruah, Gautom Kumar Sarmah, Nayan Kamal Bhattacharyya, Naleen Borthakur, Birendra Nath Goswami, Kumar Ranjan Boruah: Aluminium Chloride and Sodium Iodide (AlCl3-NaI): A Versatile Dehydrating Agent. In: Journal of Chemical Research. Band2001, Nr.11, November 2001, S.490–492, doi:10.3184/030823401103168604.
Imen Talbi, Mohamed Lotfi Efrit, Soufiane Touil: Efficient New Protocols for Converting Primary Amides into Nitriles Initiated by P(NMe 2 ) 3 , PCl 3 , or P(OPh) 3. In: ACS Omega. Band3, Nr.5, 31. Mai 2018, S.5078–5082, doi:10.1021/acsomega.8b00544, PMID 31458722, PMC 6641971 (freier Volltext).
Muthupandian Ganesan: Methods for Direct Conversion of Primary Nitroalkanes to Nitriles. In: Current Organic Chemistry. Band25, Nr.24, 22. Dezember 2021, S.2990–3003, doi:10.2174/1385272825666211126124835.
Z. Shahsavari-Fard, A. R. Sardarian: Diethyl chlorophosphate: A new alternative reagent for dehydration of primary amides to nitriles in solvent and solvent-free conditions. In: Journal of the Iranian Chemical Society. Band8, Nr.1, März 2011, S.204–208, doi:10.1007/BF03246217.
Harry Babad, Andrew G. Zeiler: Chemistry of phosgene. In: Chemical Reviews. Band73, Nr.1, 1. Februar 1973, S.75–91, doi:10.1021/cr60281a005.
Mohammed H. Al‐Huniti, Mitchell P. Croatt: Metal‐Catalyzed Dehydration of Primary Amides to Nitriles. In: Asian Journal of Organic Chemistry. Band8, Nr.10, Oktober 2019, S.1791–1799, doi:10.1002/ajoc.201900343.
Hiroyuki Okabe, Asuka Naraoka, Takahiro Isogawa, Shunsuke Oishi, Hiroshi Naka: Acceptor-Controlled Transfer Dehydration of Amides to Nitriles. In: Organic Letters. Band21, Nr.12, 21. Juni 2019, S.4767–4770, doi:10.1021/acs.orglett.9b01657.
Stephan Enthaler: Straightforward Iron‐Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. In: European Journal of Organic Chemistry. Band2011, Nr.25, September 2011, S.4760–4763, doi:10.1002/ejoc.201100754.
Stephan Enthaler: Straightforward Uranium‐Catalyzed Dehydration of Primary Amides to Nitriles. In: Chemistry – A European Journal. Band17, Nr.34, 16. August 2011, S.9316–9319, doi:10.1002/chem.201101478.
Stephan Enthaler, Shigeyoshi Inoue: An Efficient Zinc‐Catalyzed Dehydration of Primary Amides to Nitriles. In: Chemistry – An Asian Journal. Band7, Nr.1, 2. Januar 2012, S.169–175, doi:10.1002/asia.201100493.
Shekharappa, L. Roopesh Kumar, C. Srinivasulu, Vommina V. Sureshbabu: Dehydration of Chiral α-Amides to Chiral α-Nitriles Under the Appel Reaction Conditions. In: International Journal of Peptide Research and Therapeutics. Band27, Nr.1, März 2021, S.497–502, doi:10.1007/s10989-020-10101-y.
Richard S. Monson, Deggary N. Priest: Dehydration of Amides to Nitriles Initiated by Hexamethylphosphoric Triamide. In: Canadian Journal of Chemistry. Band49, Nr.17, 1. September 1971, S.2897–2898, doi:10.1139/v71-480.
Krishnappa Manjula, Mohamed Afzal Pasha: Rapid Method of Converting Primary Amides to Nitriles and Nitriles to Primary Amides by ZnCl 2 using Microwaves under Different Reaction Conditions. In: Synthetic Communications. Band37, Nr.9, Mai 2007, S.1545–1550, doi:10.1080/00397910701230147.
Rui Ding, Yongguo Liu, Mengru Han, Wenyi Jiao, Jiaqi Li, Hongyu Tian, Baoguo Sun: Synthesis of Nitriles from Primary Amides or Aldoximes under Conditions of a Catalytic Swern Oxidation. In: The Journal of Organic Chemistry. Band83, Nr.20, 19. Oktober 2018, S.12939–12944, doi:10.1021/acs.joc.8b02190.
Kazuaki Ishihara, Yoshiro Furuya, Hisashi Yamamoto: Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. In: Angewandte Chemie. Band114, Nr.16, 16. August 2002, S.3109, doi:10.1002/1521-3757(20020816)114:16<3109::AID-ANGE3109>3.0.CO;2-K.
Jiban K. Chakrabarti, Terrence M. Hotten: A new route to nitriles. Dehydration of aldoximes using 2,4,6-trichloro-s-triazine (cyanuric chloride). In: Journal of the Chemical Society, Chemical Communications. Nr.22, 1972, S.1226, doi:10.1039/c39720001226.
Mild and Efficient Dehydration of Oximes to Nitriles Mediated by the Burgess Reagent. In: Synlett. Band2000, Nr.08, 2000, S.1169–1171, doi:10.1055/s-2000-6752.
Ziad Moussa, Saleh A. Ahmed, Ahmad S. ElDouhaibi, Shaya Y. Al-Raqa: NMR Studies and electrophilic properties of triphenylphosphine–trifluoromethanesulfonic anhydride; a remarkable dehydrating reagent system for the conversion of aldoximes into nitriles. In: Tetrahedron Letters. Band51, Nr.14, April 2010, S.1826–1831, doi:10.1016/j.tetlet.2010.01.119.
Kengo Hyodo, Saki Kitagawa, Masayuki Yamazaki, Kingo Uchida: Iron‐Catalyzed Dehydration of Aldoximes to Nitriles Requiring Neither Other Reagents Nor Nitrile Media. In: Chemistry – An Asian Journal. Band11, Nr.9, 6. Mai 2016, S.1348–1352, doi:10.1002/asia.201600085.
Philipp Rommelmann, Tobias Betke, Harald Gröger: Synthesis of Enantiomerically Pure N -Acyl Amino Nitriles via Catalytic Dehydration of Oximes and Application in a de Novo Synthesis of Vildagliptin. In: Organic Process Research & Development. Band21, Nr.10, 20. Oktober 2017, S.1521–1527, doi:10.1021/acs.oprd.7b00169.
Kazuya Yamaguchi, Hiroshi Fujiwara, Yoshiyuki Ogasawara, Miyuki Kotani, Noritaka Mizuno: A Tungsten–Tin Mixed Hydroxide as an Efficient Heterogeneous Catalyst for Dehydration of Aldoximes to Nitriles. In: Angewandte Chemie. Band119, Nr.21, 18. Mai 2007, S.3996–3999, doi:10.1002/ange.200605004.
Dongliang Zhang, Yaping Huang, Erlei Zhang, Rong Yi, Chao Chen, Lei Yu, Qing Xu: Pd/Mn Bimetallic Relay Catalysis for Aerobic Aldoxime Dehydration to Nitriles. In: Advanced Synthesis & Catalysis. Band360, Nr.4, 15. Februar 2018, S.784–790, doi:10.1002/adsc.201701154.
Tobias Betke, Jun Higuchi, Philipp Rommelmann, Keiko Oike, Taiji Nomura, Yasuo Kato, Yasuhisa Asano, Harald Gröger: Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. In: ChemBioChem. Band19, Nr.8, 16. April 2018, S.768–779, doi:10.1002/cbic.201700571.
Liyuan Lan, Shuai Huang, Yongguo Liu, Baoguo Sun, Hongyu Tian: Preparation and odor characteristics of nitriles derived from aldehydes. In: Flavour and Fragrance Journal. Band35, Nr.4, Juli 2020, S.425–434, doi:10.1002/ffj.3581.
Dylan J. Quinn, Graham J. Haun, Gustavo Moura-Letts: Direct synthesis of nitriles from aldehydes with hydroxylamine-O-sulfonic acid in acidic water. In: Tetrahedron Letters. Band57, Nr.34, August 2016, S.3844–3847, doi:10.1016/j.tetlet.2016.07.047.
Xiao-De An, Shouyun Yu: Direct Synthesis of Nitriles from Aldehydes Using an O -Benzoyl Hydroxylamine (BHA) as the Nitrogen Source. In: Organic Letters. Band17, Nr.20, 16. Oktober 2015, S.5064–5067, doi:10.1021/acs.orglett.5b02547.
Antonella Leggio, Emilia Lucia Belsito, Sonia Gallo, Angelo Liguori: One-pot conversion of aldehydes to nitriles mediated by TiCl 4. In: Tetrahedron Letters. Band58, Nr.15, April 2017, S.1512–1514, doi:10.1016/j.tetlet.2017.03.007.
Lewis Acid Reagents Edited by H. Yamamoto. Oxford University Press: Oxford, UK. 1999. 270 pp. £75.00, ISBN 0 19 850099 8. In: Organic Process Research & Development. Band3, Nr.4, 15. April 1999, S.292–292, doi:10.1021/op990022+.
Jitendra Gurjar, Jorick Bater, Valery V. Fokin: Sulfuryl Fluoride Mediated Conversion of Aldehydes to Nitriles. In: Chemistry – A European Journal. Band25, Nr.8, 6. Februar 2019, S.1906–1909, doi:10.1002/chem.201805175.
Albert M. van Leusen, Piet G. Oomkes: One-Step Conversion of Aldehydes to Nitriles. Introduction of a One-Carbon Unit. In: Synthetic Communications. Band10, Nr.5, Januar 1980, S.399–403, doi:10.1080/00397918008061830.
Otto H. Oldenziel, Daan Van Leusen, Albert M. Van Leusen: Chemistry of sulfonylmethyl isocyanides. 13. A general one-step synthesis of nitriles from ketones using tosylmethyl isocyanide. Introduction of a one-carbon unit. In: The Journal of Organic Chemistry. Band42, Nr.19, September 1977, S.3114–3118, doi:10.1021/jo00439a002.
Niamh Disney, Megan Smyth, Scott Wharry, Thomas S. Moody, Marcus Baumann: A cyanide-free synthesis of nitriles exploiting flow chemistry. In: Reaction Chemistry & Engineering. 2024, doi:10.1039/D3RE00458A.
M. F. Semmelhack, Christopher R. Schmid: Nitroxyl-mediated electro-oxidation of amines to nitriles and carbonyl compounds. In: Journal of the American Chemical Society. Band105, Nr.22, Oktober 1983, S.6732–6734, doi:10.1021/ja00360a042.
Kyle M. Lambert, James M. Bobbitt, Sherif A. Eldirany, Liam E. Kissane, Rose K. Sheridan, Zachary D. Stempel, Francis H. Sternberg, William F. Bailey: Metal‐Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles. In: Chemistry – A European Journal. Band22, Nr.15, 4. April 2016, S.5156–5159, doi:10.1002/chem.201600549.
Yasunari Maeda, Takahiro Nishimura, Sakae Uemura: Copper-Catalyzed Oxidation of Amines with Molecular Oxygen. In: Bulletin of the Chemical Society of Japan. Band76, Nr.12, Dezember 2003, S.2399–2403, doi:10.1246/bcsj.76.2399.
Christiane Janke, Jörg Radnik, Ursula Bentrup, Andreas Martin, Angelika Brückner: Vanadium‐Containing Oxynitrides: Effective Catalysts for the Ammoxidation of 3‐Picoline. In: ChemCatChem. Band1, Nr.4, 30. November 2009, S.485–491, doi:10.1002/cctc.200900180.
Yoshiaki Nakao, Tamejiro Hiyama: Nickel-catalyzed carbocyanation of alkynes. In: Pure and Applied Chemistry. Band80, Nr.5, 1. Januar 2008, S.1097–1107, doi:10.1351/pac200880051097.
Haitham Hassan, Vincent Pirenne, Maren Wissing, Chahinaz Khiar, Ashique Hussain, Frédéric Robert, Yannick Landais: Free‐Radical Carbocyanation of Olefins. In: Chemistry – A European Journal. Band23, Nr.19, 3. April 2017, S.4651–4658, doi:10.1002/chem.201605946.
Laurent Vanoye, Ahmad Hammoud, Hélène Gérard, Alexandra Barnes, Régis Philippe, Pascal Fongarland, Claude de Bellefon, Alain Favre-Réguillon: Direct Synthesis of Nitriles from Carboxylic Acids Using Indium-Catalyzed Transnitrilation: Mechanistic and Kinetic Study. In: ACS Catalysis. Band9, Nr.11, 1. November 2019, S.9705–9714, doi:10.1021/acscatal.9b02779.
Tetsuto Tsunoda, Kaori Uemoto, Chisato Nagino, Megumi Kawamura, Hiroto Kaku, Shô Itô: A facile one-pot cyanation of primary and secondary alcohols. Application of some new Mitsunobu reagents. In: Tetrahedron Letters. Band40, Nr.41, Oktober 1999, S.7355–7358, doi:10.1016/S0040-4039(99)01509-9.
B.A. Phillips, G. Fodor, J. Gal, F. Letourneau, J.J. Ryan: Mechanism of the von Braun amide degradations with carbonyl bromide or phosphorus pentabromide. In: Tetrahedron. Band29, Nr.21, Januar 1973, S.3309–3327, doi:10.1016/S0040-4020(01)93483-0.
Irina P. Beletskaya, Alexander S. Sigeev, Alexander S. Peregudov, Pavel V. Petrovskii: Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles. In: Journal of Organometallic Chemistry. Band689, Nr.23, November 2004, S.3810–3812, doi:10.1016/j.jorganchem.2004.07.019.
C. Frederick Koelsch: Some Applications of the Rosenmund-v. Braun Nitrile Synthesis. In: Journal of the American Chemical Society. Band58, Nr.8, August 1936, S.1328–1330, doi:10.1021/ja01299a004.
Naoto Chatani, Terukiyo Hanafusa: Transition-metal-catalyzed reactions of trimethylsilyl cyanide. 4. Palladium-catalyzed cyanation of aryl halides by trimethylsilyl cyanide. In: The Journal of Organic Chemistry. Band51, Nr.24, November 1986, S.4714–4716, doi:10.1021/jo00374a041.
Shunichi Murahashi, Takeshi Naota, Nobuyuki Nakajima: Palladium-catalyzed decarbonylation of acyl cyanides. In: The Journal of Organic Chemistry. Band51, Nr.6, März 1986, S.898–901, doi:10.1021/jo00356a029.
Mark Sundermeier, Alexander Zapf, Matthias Beller, Jürgen Sans: A new palladium catalyst system for the cyanation of aryl chlorides. In: Tetrahedron Letters. Band42, Nr.38, September 2001, S.6707–6710, doi:10.1016/S0040-4039(01)01390-9.
Todd D. Senecal, Wei Shu, Stephen L. Buchwald: A General, Practical Palladium‐Catalyzed Cyanation of (Hetero)Aryl Chlorides and Bromides. In: Angewandte Chemie. Band125, Nr.38, 16. September 2013, S.10219–10223, doi:10.1002/ange.201304188.
Florian Glöcklhofer, Markus Lunzer, Johannes Fröhlich: Facile Synthesis of Cyanoarenes from Quinones by Reductive Aromatization of Cyanohydrin Intermediates. In: Synlett. Band26, Nr.07, 1. April 2015, S.950–952, doi:10.1055/s-0034-1380150.
Jonathan T. Reeves, Christian A. Malapit, Frederic G. Buono, Kanwar P. Sidhu, Maurice A. Marsini, C. Avery Sader, Keith R. Fandrick, Carl A. Busacca, Chris H. Senanayake: Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis. In: Journal of the American Chemical Society. Band137, Nr.29, 29. Juli 2015, S.9481–9488, doi:10.1021/jacs.5b06136.
Hiroshi Ohno, Atsunori Mori, Shohei Inoue: Lanthanoid(III) Alkoxides as Novel Catalysts for a Rapid Transhydrocyanation from Acetone Cyanohydrin to Aldehydes and Ketones. In: Chemistry Letters. Band22, Nr.2, Februar 1993, S.375–378, doi:10.1246/cl.1993.375.
David A. Evans, Gary L. Carroll, Larry K. Truesdale: Synthetic applications of trimethylsilyl cyanide. Efficient synthesis of β-aminomethyl alcohols. In: The Journal of Organic Chemistry. Band39, Nr.7, April 1974, S.914–917, doi:10.1021/jo00921a012.
Shu Kobayashi, Yoshikazu Tsuchiya, Teruaki Mukaiyama: A Facile Synthesis of Cyanohydrin Trimethylsilyl Ethers by the Addition Reaction of Trimethylsilyl Cyanide with Aldehydes under Basic Condition. In: Chemistry Letters. Band20, Nr.4, April 1991, S.537–540, doi:10.1246/cl.1991.537.
Yuri N. Belokon', Susana Caveda-Cepas, Brendan Green, Nicolai S. Ikonnikov, Viktor N. Khrustalev, Vladimir S. Larichev, Margarita A. Moscalenko, Michael North, Charles Orizu, Vitali I. Tararov, Michela Tasinazzo, Galina I. Timofeeva, Lidia V. Yashkina: The Asymmetric Addition of Trimethylsilyl Cyanide to Aldehydes Catalyzed by Chiral (Salen)Titanium Complexes. In: Journal of the American Chemical Society. Band121, Nr.16, 1. April 1999, S.3968–3973, doi:10.1021/ja984197v.
Siegfried Hünig, Rainer Schaller: The Chemistry of Acyl Cyanides. In: Angewandte Chemie International Edition in English. Band21, Nr.1, Januar 1982, S.36–49, doi:10.1002/anie.198200361.
Harald Gröger, Yasuhisa Asano: Cyanide-Free Enantioselective Catalytic Strategies for the Synthesis of Chiral Nitriles. In: The Journal of Organic Chemistry. doi:10.1021/acs.joc.9b02773.
Amitava Rakshit, Hirendra Nath Dhara, Ashish Kumar Sahoo, Bhisma K. Patel: The Renaissance of Organo Nitriles in Organic Synthesis. In: Chemistry – An Asian Journal. Band17, Nr.21, 2. November 2022, doi:10.1002/asia.202200792.
Charles R. Hauser, David S. Hoffenberg: CONVERSION OF NITRILES TO AMIDES AND ACIDS BY MEANS OF BORON FLUORIDE. In: The Journal of Organic Chemistry. Band20, Nr.10, Oktober 1955, S.1448–1453, doi:10.1021/jo01127a025.
V. G. Debabov, A. S. Yanenko: Biocatalytic hydrolysis of nitriles. In: Review Journal of Chemistry. Band1, Nr.4, Oktober 2011, S.385–402, doi:10.1134/S2079978011030010.
Wayiza Masamba: Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis. In: Molecules. Band26, Nr.6, 18. März 2021, S.1707, doi:10.3390/molecules26061707, PMID 33803879, PMC 8003338 (freier Volltext).
Jarugu Narasimha Moorthy, Nidhi Singhal: Facile and Highly Selective Conversion of Nitriles to Amides via Indirect Acid-Catalyzed Hydration Using TFA or AcOH−H 2 SO 4. In: The Journal of Organic Chemistry. Band70, Nr.5, 1. März 2005, S.1926–1929, doi:10.1021/jo048240a.
Manas K Basu, Fen-Tair Luo: Efficient transformation of nitrile into amide under mild condition. In: Tetrahedron Letters. Band39, Nr.19, Mai 1998, S.3005–3006, doi:10.1016/S0040-4039(98)00444-4.
Charles R. Hauser, David S. Hoffenberg: CONVERSION OF NITRILES TO AMIDES AND ACIDS BY MEANS OF BORON FLUORIDE. In: The Journal of Organic Chemistry. Band20, Nr.10, Oktober 1955, S.1448–1453, doi:10.1021/jo01127a025.
Kazuya Yamaguchi, Mitsunori Matsushita, Noritaka Mizuno: Efficient Hydration of Nitriles to Amides in Water, Catalyzed by Ruthenium Hydroxide Supported on Alumina. In: Angewandte Chemie International Edition. Band43, Nr.12, 12. März 2004, S.1576–1580, doi:10.1002/anie.200353461.
N. Naresh Kumar Reddy, Sadu Nageswara Rao, Rajendra D. Patil, Subbarayappa Adimurthy: Transition metal-free hydration of nitriles to amides mediated by NaOH. In: Advanced Material Science. Band3, Nr.1, 2018, doi:10.15761/AMS.1000137.
Shreenath Prasad, Tek Chand Bhalla: Nitrile hydratases (NHases): at the interface of academia and industry. In: Biotechnol Adv. Band28, Nr.6, 2010, S.725-41, doi:10.1016/j.biotechadv.2010.05.020.
Bo Wu, Ji Zhang, Meng Yang, Yang Yue, Li-Jian Ma, Xiao-Qi Yu: Raney Ni/KBH4: An efficient and mild system for the reduction of nitriles to amines. In: Arkivoc. Band2008, Nr.12, 4. April 2008, S.95–102, doi:10.3998/ark.5550190.0009.c11.
Shankare Gowda, D.Channe Gowda: Application of hydrazinium monoformate as new hydrogen donor with Raney nickel: a facile reduction of nitro and nitrile moieties. In: Tetrahedron. Band58, Nr.11, März 2002, S.2211–2213, doi:10.1016/S0040-4020(02)00093-5.
P Schärdinger, T Muller, J Lercher: Investigations into the mechanism of the liquid-phase hydrogenation of nitriles over Raney-Co catalysts. In: Journal of Catalysis. Band253, Nr.1, 1. Januar 2008, S.167–179, doi:10.1016/j.jcat.2007.10.008.
Atsuko Nose, Tadahiro Kudo: Studies of reduction with dimethoxyborane-transition metal boride systems. In: Chemical and Pharmaceutical Bulletin. Band38, Nr.6, 1990, S.1720–1723, doi:10.1248/cpb.38.1720.
Morris Freifelder: A Low Pressure Process for the Reduction of Nitriles. Use of Rhodium Catalyst 1. In: Journal of the American Chemical Society. Band82, Nr.9, Mai 1960, S.2386–2389, doi:10.1021/ja01494a067.
R Ramachandran: An overview of industrial uses of hydrogen. In: International Journal of Hydrogen Energy. Band23, Nr.7, Juli 1998, S.593–598, doi:10.1016/S0360-3199(97)00112-2.
Siegfried R. Waldvogel: Strategic Applications of Named Reactions in Organic Synthesis. Background and Detailed Mechanisms. By Laszlo Kürti and Barbara Czako. In: Angewandte Chemie International Edition. Band44, Nr.32, 8. August 2005, S.5005–5006, doi:10.1002/anie.200585304.
Franz J. Weiberth, Stan S. Hall: Copper(I)-activated addition of Grignard reagents to nitriles. Synthesis of ketimines, ketones, and amines. In: The Journal of Organic Chemistry. Band52, Nr.17, August 1987, S.3901–3904, doi:10.1021/jo00226a033.
H. Surya Prakash Rao, Shaik Rafi, K. Padmavathy: The Blaise reaction. In: Tetrahedron. Band64, Nr.35, August 2008, S.8037–8043, doi:10.1016/j.tet.2008.05.109.
Andriani G. Chaidali, Ioannis N. Lykakis: Synthetic Routes to Imidates and Their Applications in Organic Transformation: Recent Progress. In: European Journal of Organic Chemistry. Band26, Nr.39, 16. Oktober 2023, doi:10.1002/ejoc.202300497.
Kiyoshi Watanabe, Naoto Kogoshi, Hideaki Miki, Yasuhiro Torisawa: Improved Pinner Reaction with CPME as a Solvent. In: Synthetic Communications. Band39, Nr.11, 7. Mai 2009, S.2008–2013, doi:10.1080/00397910802632548.
Richard R. Schmidt, Josef Michel: Facile Synthesis of α‐ and β‐ O ‐Glycosyl Imidates; Preparation of Glycosides and Disaccharides. In: Angewandte Chemie International Edition in English. Band19, Nr.9, September 1980, S.731–732, doi:10.1002/anie.198007311.
You Yang, Xiaheng Zhang, Biao Yu: O-Glycosylation methods in the total synthesis of complex natural glycosides. In: Natural Product Reports. Band32, Nr.9, 2015, S.1331–1355, doi:10.1039/C5NP00033E.
Rodney A. Fernandes, Pullaiah Kattanguru, Sachin P. Gholap, Dipali A. Chaudhari: Recent advances in the Overman rearrangement: synthesis of natural products and valuable compounds. In: Organic & Biomolecular Chemistry. Band15, Nr.13, 2017, S.2672–2710, doi:10.1039/C6OB02625G.
Daisuke Uraguchi, Ryosuke Tsutsumi, Takashi Ooi: Catalytic asymmetric Payne oxidation under the catalysis of P-spiro chiral triaminoiminophosphorane: application to the synthesis of N-sulfonyl oxaziridines. In: Tetrahedron. Band70, Nr.8, Februar 2014, S.1691–1701, doi:10.1016/j.tet.2013.12.086.
George B. Payne, Philip H. Deming, Paul H. Williams: Reactions of Hydrogen Peroxide. VII. Alkali-Catalyzed Epoxidation and Oxidation Using a Nitrile as Co-reactant. In: The Journal of Organic Chemistry. Band26, Nr.3, März 1961, S.659–663, doi:10.1021/jo01062a004.
Fan Xu, Jianhua Sun, Qi Shen: Samarium diiodide promoted synthesis of N,N ′-disubstituted amidines. In: Tetrahedron Letters. Band43, Nr.10, März 2002, S.1867–1869, doi:10.1016/S0040-4039(02)00129-6.
John H. Forsberg, Vincent T. Spaziano, Trichey M. Balasubramanian, Gordon K. Liu, Steven A. Kinsley, Charles A. Duckworth, John J. Poteruca, Paul S. Brown, Judith L. Miller: Use of lanthanide(III) ions as catalysts for the reactions of amines with nitriles. In: The Journal of Organic Chemistry. Band52, Nr.6, März 1987, S.1017–1021, doi:10.1021/jo00382a009.
Frederick G. Bordwell, Herbert E. Fried: Acidities of the hydrogen-carbon protons in carboxylic esters, amides, and nitriles. In: The Journal of Organic Chemistry. Band46, Nr.22, Oktober 1981, S.4327–4331, doi:10.1021/jo00335a001.
Victor A. Lucas-Rosales, Marco A. García-Revilla, J. Oscar C. Jiménez-Halla: Computational Revision of the Mechanism of the Thorpe Reaction. MDPI, 14. November 2022, S.29, doi:10.3390/ecsoc-26-13550.
Yasuo Sato, Michihisa Yato, Tomohiko Ohwada, Shinichi Saito, Koichi Shudo: Involvement of Dicationic Species as the Reactive Intermediates in Gattermann, Houben-Hoesch, and Friedel-Crafts Reactions of Nonactivated Benzenes. In: Journal of the American Chemical Society. Band117, Nr.11, März 1995, S.3037–3043, doi:10.1021/ja00116a009.
T. L. Cairns, A. W. Larchar, B. C. McKusick: The Trimerization of Nitriles at High Pressures. In: Journal of the American Chemical Society. Band74, Nr.22, November 1952, S.5633–5636, doi:10.1021/ja01142a028.
Fan Xu, Jian-Hua Sun, Hai-Bin Yan, Qi Shen: Cyclotrimerization of Nitriles Catalyzed by SmI 2 /Amines: Synthesis of 2,4,6-Trisubstituted-S-Triazines. In: Synthetic Communications. Band30, Nr.6, März 2000, S.1017–1022, doi:10.1080/00397910008087119.
Angel Díaz-Ortiz, Antonio de la Hoz, Andrés Moreno, Ana Sánchez-Migallón, Gema Valiente: Synthesis of 1,3,5-triazines in solvent-free conditions catalysed by silica-supported lewis acids. In: Green Chem. Band4, Nr.4, 2002, S.339–343, doi:10.1039/B202014A.
Antonio Herrera, Alberto Riaño, Ramón Moreno, Bárbara Caso, Zulay D. Pardo, Israel Fernández, Elena Sáez, Dolores Molero, Angel Sánchez-Vázquez, Roberto Martínez-Alvarez: One-Pot Synthesis of 1,3,5-Triazine Derivatives via Controlled Cross-Cyclotrimerization of Nitriles: A Mechanism Approach. In: The Journal of Organic Chemistry. Band79, Nr.15, 1. August 2014, S.7012–7024, doi:10.1021/jo501144v.
Pierre Kuhn, Aurélien Forget, Dangsheng Su, Arne Thomas, Markus Antonietti: From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of Porous Polymer Networks. In: Journal of the American Chemical Society. Band130, Nr.40, 8. Oktober 2008, S.13333–13337, doi:10.1021/ja803708s.
Barbara Heller, Marko Hapke: The fascinating construction of pyridine ring systems by transition metal-catalysed [2 + 2 + 2] cycloaddition reactions. In: Chemical Society Reviews. Band36, Nr.7, 2007, S.1085, doi:10.1039/b607877j.
Kaili Cen, Muhammad Usman, Wangzhen Shen, Meijing Liu, Rong Yang, Jinhui Cai: A review on the assembly of multi-substituted pyridines via Co-catalyzed [2 + 2 + 2] cycloaddition with nitriles. In: Organic & Biomolecular Chemistry. Band20, Nr.37, 2022, S.7391–7404, doi:10.1039/D2OB01344D.
Rakhi Vishwakarma, Chandrakanth Gadipelly, Lakshmi Kantam Mannepalli: Advances in Tetrazole Synthesis – An Overview. In: ChemistrySelect. Band7, Nr.29, 5. August 2022, doi:10.1002/slct.202200706.
Yijun Huang, Alexander Dömling: The Gewald multicomponent reaction. In: Molecular Diversity. Band15, Nr.1, Februar 2011, S.3–33, doi:10.1007/s11030-010-9229-6.
Diego Savoia, Emilio Tagliavini, Claudio Trombini, Achille Umani-Ronchi: Potassium on alumina as a reagent for reductive decyanation of alkylnitriles. In: The Journal of Organic Chemistry. Band45, Nr.16, August 1980, S.3227–3229, doi:10.1021/jo01304a016.
Ghodsi Mohammadi Ziarani, Fatemeh Soltani Hasankiadeh, Fatemeh Mohajer: Recent Applications of Ritter Reactions in Organic Syntheses. In: ChemistrySelect. Band5, Nr.45, 7. Dezember 2020, S.14349–14379, doi:10.1002/slct.202003470.
Prativa Bade Shrestha-Dawadi, Johannes C. Jochims: On the Synthesis of Nitrilium Salts from Nitriles and Chloroformates. In: Synthesis. Band1993, Nr.04, 1993, S.426–432, doi:10.1055/s-1993-25876.
Richard F. Borch: Nitrilium salts. New method for the synthesis of secondary amines. In: The Journal of Organic Chemistry. Band34, Nr.3, März 1969, S.627–629, doi:10.1021/jo01255a031.
Bruce N. Storhoff, Huntley C. Lewis Jr.: Organonitrile complexes of transition metals. In: Coordination Chemistry Reviews. Band23, Nr.1, Juni 1977, S.1–29, doi:10.1016/S0010-8545(00)80329-X.
Silvana F. Rach, Fritz E. Kühn: Nitrile Ligated Transition Metal Complexes with Weakly Coordinating Counteranions and Their Catalytic Applications. In: Chemical Reviews. Band109, Nr.5, 13. Mai 2009, S.2061–2080, doi:10.1021/cr800270h.
Te-Wei Lee, Chang-Shinn Su, Gann Ting: Synthesis, reactivity and 99mTc labelling of 2-alkoxyisobutylisonitrile. In: Applied Radiation and Isotopes. Band47, Nr.2, Februar 1996, S.207–210, doi:10.1016/0969-8043(95)00249-9.
Harald Gröger: Catalytic Enantioselective Strecker Reactions and Analogous Syntheses. In: Chemical Reviews. Band103, Nr.8, 1. August 2003, S.2795–2828, doi:10.1021/cr020038p.
Thomas Willke: Methionine production—a critical review. In: Applied Microbiology and Biotechnology. Band98, Nr.24, Dezember 2014, S.9893–9914, doi:10.1007/s00253-014-6156-y.
Arman Sedghi, Reza Eslami Farsani, Ali Shokuhfar: The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. In: Journal of Materials Processing Technology. Band198, Nr.1-3, März 2008, S.60–67, doi:10.1016/j.jmatprotec.2007.06.052.
Md Abdullah Al Faruque, Rechana Remadevi, Joselito Razal, Xungai Wang, Maryam Naebe: Investigation on structure and characteristics of alpaca‐based wet‐spun polyacrylonitrile composite fibers by utilizing natural textile waste. In: Journal of Applied Polymer Science. Band137, Nr.7, 15. Februar 2020, doi:10.1002/app.48370.
B. E. Geller: [No title found]. In: Fibre Chemistry. Band34, Nr.3, 2002, S.151–161, doi:10.1023/A:1020525628197.
P. Bajaj, Surya Kumari: Modification of Acrylic Fibers: An Overview. In: Journal of Macromolecular Science, Part C: Polymer Reviews. Band27, Nr.2, Mai 1987, S.181–217, doi:10.1080/07366578708081915.
T.A. Adegbola, O. Agboola, O.S.I. Fayomi: Review of polyacrylonitrile blends and application in manufacturing technology: recycling and environmental impact. In: Results in Engineering. Band7, September 2020, S.100144, doi:10.1016/j.rineng.2020.100144.
Xing Jin, Chunfang Feng, Claudia Creighton, Nishar Hameed, Jyotishkumar Parameswaranpillai, Nisa V. Salim: On the structural evolution of textile grade polyacrylonitrile fibers during stabilization and carbonization: Towards the manufacture of low‐cost carbon fiber. In: Polymer Degradation and Stability. Band186, 1. April 2021, S.109536, doi:10.1016/j.polymdegradstab.2021.109536.
J. Sawyer: Comparing the Level of Dexterity offered by Latex and Nitrile SafeSkin Gloves. In: Annals of Occupational Hygiene. Band50, Nr.3, 12. Dezember 2005, S.289–296, doi:10.1093/annhyg/mei066.
Keh-Ping Chao, Pak-Hing Lee, Min-Jet Wu: Organic solvents permeation through protective nitrile gloves. In: Journal of Hazardous Materials. Band99, Nr.2, April 2003, S.191–201, doi:10.1016/S0304-3894(03)00042-6.
L. B. Brennan, D. H. Isaac, J. C. Arnold: Recycling of acrylonitrile–butadiene–styrene and high‐impact polystyrene from waste computer equipment. In: Journal of Applied Polymer Science. Band86, Nr.3, 17. Oktober 2002, S.572–578, doi:10.1002/app.10833.
Francesca Sabatini, Silvia Pizzimenti, Irene Bargagli, Ilaria Degano, Celia Duce, Laura Cartechini, Francesca Modugno, Francesca Rosi: A Thermal Analytical Study of LEGO® Bricks for Investigating Light-Stability of ABS. In: Polymers. Band15, Nr.15, 31. Juli 2023, S.3267, doi:10.3390/polym15153267.
Zhijuan Wang, Hongyan Li, Tao Li, Qing Zhang, Yaqi Cai, Hua Bai, Qing Lv: Application of validated migration models for the risk assessment of styrene and acrylonitrile in ABS plastic toys. In: Ecotoxicology and Environmental Safety. Band252, März 2023, S.114570, doi:10.1016/j.ecoenv.2023.114570.
Alex Tullo: Industry braces for nylon 6,6 shortage. In: C&EN Global Enterprise. Band96, Nr.40, 8. Oktober 2018, S.22–23, doi:10.1021/cen-09640-feature3.
Younghyun Lee, Sung Woo Lee, Hyung Ju Kim, Yong Tae Kim, Kun-Yi Andrew Lin, Jechan Lee: Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. In: Applied Sciences. Band10, Nr.21, 26. Oktober 2020, S.7506, doi:10.3390/app10217506.
Mohammad Jaber Darabi Mahboub, Jean-Luc Dubois, Fabrizio Cavani, Mohammad Rostamizadeh, Gregory S. Patience: Catalysis for the synthesis of methacrylic acid and methyl methacrylate. In: Chemical Society Reviews. Band47, Nr.20, 2018, S.7703–7738, doi:10.1039/C8CS00117K.
Ian F. McConvey, Dean Woods, Moira Lewis, Quan Gan, Paul Nancarrow: The Importance of Acetonitrile in the Pharmaceutical Industry and Opportunities for its Recovery from Waste. In: Organic Process Research & Development. Band16, Nr.4, 20. April 2012, S.612–624, doi:10.1021/op2003503.
Cristiano Soleo Funari, Renato Lajarim Carneiro, Manish M. Khandagale, Alberto José Cavalheiro, Emily F. Hilder: Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. In: Journal of Separation Science. Band38, Nr.9, Mai 2015, S.1458–1465, doi:10.1002/jssc.201401324.
Ladislav Androvič, Jan Bartáček, Miloš Sedlák: Recent advances in the synthesis and applications of azo initiators. In: Research on Chemical Intermediates. Band42, Nr.6, Juni 2016, S.5133–5145, doi:10.1007/s11164-015-2351-4.
Bao Li, Alison E. Wendlandt, Shannon S. Stahl: Replacement of Stoichiometric DDQ with a Low Potential o -Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. In: Organic Letters. Band21, Nr.4, 15. Februar 2019, S.1176–1181, doi:10.1021/acs.orglett.9b00111, PMID 30702297, PMC 6413530 (freier Volltext).
Jun-Ho Choi, Kwang-Im Oh, Hochan Lee, Chewook Lee, Minhaeng Cho: Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis. In: The Journal of Chemical Physics. Band128, Nr.13, 7. April 2008, doi:10.1063/1.2844787.
Lili Song, Zhigang Liu, Minjie Liu, Pei Tang, Fener Chen: Efficient and Scalable Synthesis of Ketoprofen: A Pyrolytic Aromatization Approach. In: Organic Process Research & Development. Band27, Nr.5, 19. Mai 2023, S.922–927, doi:10.1021/acs.oprd.3c00049.
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1650, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1651, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1650f., doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1651f., doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Ricky C.K. Cheng, Denis B. Tikhonov, Boris S. Zhorov: Structural Model for Phenylalkylamine Binding to L-type Calcium Channels. In: Journal of Biological Chemistry. Band284, Nr.41, Oktober 2009, S.28332–28342, doi:10.1074/jbc.M109.027326, PMID 19700404, PMC 2788883 (freier Volltext).
Natalija Popović, Nicanor Morales-Delgado, David Vidal Mena, Antonia Alonso, María Pascual Martínez, María Caballero Bleda, Miroljub Popović: Verapamil and Alzheimer’s Disease: Past, Present, and Future. In: Frontiers in Pharmacology. Band11, 5. Mai 2020, doi:10.3389/fphar.2020.00562, PMID 32431612, PMC 7214748 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1654, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Junmei Cairns, James N. Ingle, Tanda M. Dudenkov et al.: Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. In: JCI Insight. Band5, Nr.16, 20. August 2020, doi:10.1172/jci.insight.137571, PMID 32701512, PMC 7455128 (freier Volltext).
Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT: Structural basis for antagonism and resistance of bicalutamide in prostate cancer. In: Proc Natl Acad Sci U S A. 102. Jahrgang, Nr.17, 2005, S.6201–6, doi:10.1073/pnas.0500381102, PMID 15833816, PMC 1087923 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1653, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Mahnoor Pasha, Ammara Zamir, Waseem Ashraf, Imran Imran, Hamid Saeed, Anees Ur Rehman, Majid Aziz, Faleh Alqahtani, Muhammad Fawad Rasool: A systematic review on the clinical pharmacokinetics of vildagliptin in healthy and disease populations. In: Expert Opinion on Drug Metabolism & Toxicology. 26. November 2023, S.1–13, doi:10.1080/17425255.2023.2288252.
Mika Nabeno, Fumihiko Akahoshi, Hiroyuki Kishida, Ikuko Miyaguchi, Yoshihito Tanaka, Shinichi Ishii, Takashi Kadowaki: A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. In: Biochemical and Biophysical Research Communications. Band434, Nr.2, Mai 2013, S.191–196, doi:10.1016/j.bbrc.2013.03.010.
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1660, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Sandra E. Pineda-Sanabria, Ian M. Robertson, Yin-Biao Sun, Malcolm Irving, Brian D. Sykes: Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. In: Journal of Molecular and Cellular Cardiology. Band92, März 2016, S.174–184, doi:10.1016/j.yjmcc.2016.02.003, PMID 26853943, PMC 4831045 (freier Volltext).
Das K, Bauman JD, Clark AD, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E: High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. In: Proc Natl Acad Sci U S A. 105. Jahrgang, Nr.5, 2008, S.1466–71, doi:10.1073/pnas.0711209105, PMID 18230722, PMC 2234167 (freier Volltext).
Coleman JA, Green EM, Gouaux E: X-ray structures and mechanism of the human serotonin transporter. In: Nature. 532. Jahrgang, Nr.7599, 2016, S.334–9, doi:10.1038/nature17629, PMID 27049939, PMC 4898786 (freier Volltext).
David R Bickers, Peter Calow, Helmut A Greim, Jon M Hanifin, Adrianne E Rogers, Jean-Hilaire Saurat, I Glenn Sipes, Robert L Smith, Hachiro Tagami: The safety assessment of fragrance materials. In: Regulatory Toxicology and Pharmacology. Band37, Nr.2, April 2003, S.218–273, doi:10.1016/S0273-2300(03)00003-5.
S.P. Bhatia, V.T. Politano, A.M. Api: Evaluation of genotoxicity of nitrile fragrance ingredients using in vitro and in vivo assays. In: Food and Chemical Toxicology. Band59, September 2013, S.784–792, doi:10.1016/j.fct.2013.04.040.
K.R. Brain, D.M. Green, J. Lalko, A.M. Api: In-vitro human skin penetration of the fragrance material geranyl nitrile. In: Toxicology in Vitro. Band21, Nr.1, Februar 2007, S.133–138, doi:10.1016/j.tiv.2006.08.005.
J E Casida, D W Gammon, A H Glickman, L J Lawrence: Mechanisms of Selective Action of Pyrethroid Insecticides. In: Annual Review of Pharmacology and Toxicology. Band23, Nr.1, April 1983, S.413–438, doi:10.1146/annurev.pa.23.040183.002213.
Thomas C. Sparks, James E. Hunter, Beth A. Lorsbach, Greg Hanger, Roger E. Gast, Greg Kemmitt, Robert J. Bryant: Crop Protection Discovery: Is Being the First Best? In: Journal of Agricultural and Food Chemistry. Band66, Nr.40, 10. Oktober 2018, S.10337–10346, doi:10.1021/acs.jafc.8b03484.
Dave W Bartlett, John M Clough, Jeremy R Godwin, Alison A Hall, Mick Hamer, Bob Parr‐Dobrzanski: The strobilurin fungicides. In: Pest Management Science. Band58, Nr.7, Juli 2002, S.649–662, doi:10.1002/ps.520.
Ngangbam Sarat Singh, Ranju Sharma, Sandeep Kumar Singh, Dileep Kumar Singh: A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. In: Environmental Research. Band199, August 2021, S.111316, doi:10.1016/j.envres.2021.111316.
M. Prabhath, Luke Williams, Shreesha Bhat, Pallavi Sharma: Recent Advances in Cyanamide Chemistry: Synthesis and Applications. In: Molecules. Band22, Nr.4, 12. April 2017, S.615, doi:10.3390/molecules22040615, PMID 28417938, PMC 6154562 (freier Volltext).
Jean-Marc R Mattalia: The reductive decyanation reaction: an overview and recent developments. In: Beilstein Journal of Organic Chemistry. Band13, 13. Februar 2017, S.267–284, doi:10.3762/bjoc.13.30, PMID 28326136, PMC 5331330 (freier Volltext).
Mohammadali Torbati, Hossein Nazemiyeh, Farzaneh Lotfipour, Solmaz Asnaashari, Mahboob Nemati, Fatemeh Fathiazad: Composition and Antibacterial Activity of Heracleum Transcaucasicum and Heracleum Anisactis Aerial Parts Essential Oil. In: Advanced Pharmaceutical Bulletin. 2013, doi:10.5681/APB.2013.066, PMID 24312869, PMC 3848220 (freier Volltext).
Pablo Díaz-Rueda, Laura Morales de los Ríos, Luis C Romero, Irene García: Old poisons, new signaling molecules: the case of hydrogen cyanide. In: Journal of Experimental Botany. Band74, Nr.19, 13. Oktober 2023, S.6040–6051, doi:10.1093/jxb/erad317, PMID 37586035, PMC 10575699 (freier Volltext).
Hieng-Ming Ting, Boon Huat Cheah, Yu-Cheng Chen, Pei-Min Yeh, Chiu-Ping Cheng, Freddy Kuok San Yeo, Ane Kjersti Vie, Jens Rohloff, Per Winge, Atle M. Bones, Ralph Kissen: The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. In: Frontiers in Plant Science. Band11, 10. März 2020, doi:10.3389/fpls.2020.00257, PMID 32211010, PMC 7076197 (freier Volltext).
Adam M. Wentzell, Daniel J. Kliebenstein: Genotype, Age, Tissue, and Environment Regulate the Structural Outcome of Glucosinolate Activation. In: Plant Physiology. Band147, Nr.1, 28. April 2008, S.415–428, doi:10.1104/pp.107.115279, PMID 18359845, PMC 2330308 (freier Volltext).
Hideji Tanii: Allyl nitrile: Toxicity and health effects. In: Journal of Occupational Health. Band59, Nr.2, März 2017, S.104–111, doi:10.1539/joh.16-0147-RA, PMID 28132970, PMC 5478528 (freier Volltext).
Mika Zagrobelny, Érika de Castro, Birger Møller, Søren Bak: Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. In: Insects. Band9, Nr.2, 3. Mai 2018, S.51, doi:10.3390/insects9020051, PMID 29751568, PMC 6023451 (freier Volltext).
Mika Zagrobelny, Karsten Scheibye-Alsing, Niels Bjerg Jensen, Birger Lindberg Møller, Jan Gorodkin, Søren Bak: 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. In: BMC Genomics. Band10, Nr.1, Dezember 2009, doi:10.1186/1471-2164-10-574, PMID 19954531, PMC 2791780 (freier Volltext).
Adrian Brückner, Günther Raspotnig, Katja Wehner, Reinhard Meusinger, Roy A. Norton, Michael Heethoff: Storage and release of hydrogen cyanide in a chelicerate ( Oribatula tibialis ). In: Proceedings of the National Academy of Sciences. Band114, Nr.13, 28. März 2017, S.3469–3472, doi:10.1073/pnas.1618327114, PMID 28289203, PMC 5380029 (freier Volltext).
Annika Fagerholm, Damien Habrant, Ari M. Koskinen: Calyculins and Related Marine Natural Products as Serine-Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C. In: Marine Drugs. Band8, Nr.1, 21. Januar 2010, S.122–172, doi:10.3390/md80100122, PMID 20161975, PMC 2817927 (freier Volltext).
Joel P. Cioni, James R. Doroghazi, Kou-San Ju, Xiaomin Yu, Bradley S. Evans, Jaeheon Lee, William W. Metcalf: Cyanohydrin Phosphonate Natural Product from Streptomyces regensis. In: Journal of Natural Products. Band77, Nr.2, 28. Februar 2014, S.243–249, doi:10.1021/np400722m, PMID 24437999, PMC 3993929 (freier Volltext).
Sanjoy Adak, April L. Lukowski, Rebecca J. B. Schäfer, Bradley S. Moore: From Tryptophan to Toxin: Nature’s Convergent Biosynthetic Strategy to Aetokthonotoxin. In: Journal of the American Chemical Society. Band144, Nr.7, 23. Februar 2022, S.2861–2866, doi:10.1021/jacs.1c12778, PMID 35142504, PMC 9004672 (freier Volltext).
Ibrahim Shalayel, Seydou Coulibaly, Kieu Ly, Anne Milet, Yannick Vallée: The Reaction of Aminonitriles with Aminothiols: A Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean. In: Life. Band8, Nr.4, 19. Oktober 2018, S.47, doi:10.3390/life8040047, PMID 30347745, PMC 6316830 (freier Volltext).
Imen Talbi, Mohamed Lotfi Efrit, Soufiane Touil: Efficient New Protocols for Converting Primary Amides into Nitriles Initiated by P(NMe 2 ) 3 , PCl 3 , or P(OPh) 3. In: ACS Omega. Band3, Nr.5, 31. Mai 2018, S.5078–5082, doi:10.1021/acsomega.8b00544, PMID 31458722, PMC 6641971 (freier Volltext).
Wayiza Masamba: Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis. In: Molecules. Band26, Nr.6, 18. März 2021, S.1707, doi:10.3390/molecules26061707, PMID 33803879, PMC 8003338 (freier Volltext).
Bao Li, Alison E. Wendlandt, Shannon S. Stahl: Replacement of Stoichiometric DDQ with a Low Potential o -Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. In: Organic Letters. Band21, Nr.4, 15. Februar 2019, S.1176–1181, doi:10.1021/acs.orglett.9b00111, PMID 30702297, PMC 6413530 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1650, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1651, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1650f., doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1651f., doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Ricky C.K. Cheng, Denis B. Tikhonov, Boris S. Zhorov: Structural Model for Phenylalkylamine Binding to L-type Calcium Channels. In: Journal of Biological Chemistry. Band284, Nr.41, Oktober 2009, S.28332–28342, doi:10.1074/jbc.M109.027326, PMID 19700404, PMC 2788883 (freier Volltext).
Natalija Popović, Nicanor Morales-Delgado, David Vidal Mena, Antonia Alonso, María Pascual Martínez, María Caballero Bleda, Miroljub Popović: Verapamil and Alzheimer’s Disease: Past, Present, and Future. In: Frontiers in Pharmacology. Band11, 5. Mai 2020, doi:10.3389/fphar.2020.00562, PMID 32431612, PMC 7214748 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1654, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Junmei Cairns, James N. Ingle, Tanda M. Dudenkov et al.: Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. In: JCI Insight. Band5, Nr.16, 20. August 2020, doi:10.1172/jci.insight.137571, PMID 32701512, PMC 7455128 (freier Volltext).
Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT: Structural basis for antagonism and resistance of bicalutamide in prostate cancer. In: Proc Natl Acad Sci U S A. 102. Jahrgang, Nr.17, 2005, S.6201–6, doi:10.1073/pnas.0500381102, PMID 15833816, PMC 1087923 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1653, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Xi Wang, Yuanxun Wang, Xuemin Li, Zhenyang Yu, Chun Song, Yunfei Du: Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. In: RSC Medicinal Chemistry. Band12, Nr.10, 2021, S.1660, doi:10.1039/D1MD00131K, PMID 34778767, PMC 8528211 (freier Volltext).
Sandra E. Pineda-Sanabria, Ian M. Robertson, Yin-Biao Sun, Malcolm Irving, Brian D. Sykes: Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. In: Journal of Molecular and Cellular Cardiology. Band92, März 2016, S.174–184, doi:10.1016/j.yjmcc.2016.02.003, PMID 26853943, PMC 4831045 (freier Volltext).
Das K, Bauman JD, Clark AD, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E: High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. In: Proc Natl Acad Sci U S A. 105. Jahrgang, Nr.5, 2008, S.1466–71, doi:10.1073/pnas.0711209105, PMID 18230722, PMC 2234167 (freier Volltext).
Coleman JA, Green EM, Gouaux E: X-ray structures and mechanism of the human serotonin transporter. In: Nature. 532. Jahrgang, Nr.7599, 2016, S.334–9, doi:10.1038/nature17629, PMID 27049939, PMC 4898786 (freier Volltext).